
Deadline Scaling

Sean Cody

Managing Director of IT, North America

Table Of Contents

Introduction 4

Executive Summary 4

Overview 4

Performance 5

Challenges 5

Network Design 5

Simple 5

Link Aggregation 6

VLANs 7

Pulse 8

Repository Server Design 9

Operating System 10

Windows Hosted 10

FreeBSD and UNIX Hosted 11

CPU 13

Memory 14

Storage 14

RAID 15

SSD/SAS/SATA/SCSI 16

SAN/NAS 16

Suggested Configurations 17

© 2010 Prime Focus Soware 2

Small Render Farm 17

Medium Render Farm 17

Large Render Farm 18

For the ‘overclocking crowd’ 19

Parting Words 21

Thanks 21

About Prime Focus 22

© 2010 Prime Focus Soware 3

Introduction

Executive Summary

Deadline is a distributed and hassle free render farm and job management system. Deadline is

designed to manage product agnostic render farms for distributed computing and isn't

necessarily restricted to a visual effects or media pipeline. The distributed design of deadline

is centered around a farm of discrete compute elements rather than the traditional High

Performance Computing (HPC) 'single instance' cluster. Geing Deadline up and running is

prey easy. Though as your business grows so much your rendering infrastructure. The

purpose of this white-paper is to describe the various ways you can design a Deadline based

farm and some approaches in both networking, equipment and system tuning to allow for

scaling a farm from a few nodes to a few thousand.

Overview

In this paper we will talk about the various ways one can approach seing up a render farm to

maximize performance with respect to deadline.

We will start out by discussing how we define, measure and approach the concept of

performance followed by an overview of the challenges faced when trying to optimize a

diverse platform like a Deadline render farm. We will then go over a few network design

configurations which can be tuned to how Deadline works.

Once we get the network out of the way we will talk about the hardware and system

configuration choices to maximize the performance of a deadline repository in various

environments.

© 2010 Prime Focus Soware 4

Performance

Challenges

Network Design
Network design can have a drastic impact on how your render farm performs. As a network

grows decisions made early on can either facilitate or hinder scaling and good network design

isn’t always obvious.

A Deadline repository is essentially a file server based queueing system. Since state and

queuing are handled via simple files and the Slave application behaves accordingly there is no

‘middle-man’ issues or head-end controller failures (pulse is a special case such that is a

pluggable meta-data proxy/accelerator and not required for queueing to work).

Simple

The most common network architecture is a simple flat network with a Deadline repository,

some workstations, a few render nodes and some form of common storage. The Deadline

repository itself is a simple server with an

ethernet interface possibly aached to a

Windows domain (style of domain is largely

irrelevant with respect to Deadline). In this

configuration the Deadline repository is a

single point of contention and the link to the

rest of the production devices needs to be

some factor of oversubscription for network

capacity.

For instance, in the network depicted in figure

1, we have 100 devices and a repository with a

single link to that network. If the devices

were all using gigabit ethernet and the

© 2010 Prime Focus Soware 5
Figure 1. Simple Network

Production Network

Single/FAT Pipe

172.16.1.5
deadline.local

Render
NodesWorkstations Infrastructure

Deadline
Repository

172.16.1.50-100 172.16.1.1-50172.16.1.100-150

repository was also using gigabit ethernet we have a 100:1 oversubscription ratio (not counting

infrastructure). In this configuration it would make more sense to lock the workstations and

render nodes to 100 megabit reducing the oversubscription rate to a more manageable 10:1. Of

course you can also just use a 10 gigabit interface and uplink on the Deadline repository server

as well to achieve the same effect. As a general rule, the minimum suggested link speed for a

Deadline repository is at least a single gigabit-ethernet (full-duplex) link. This may be an

obvious point, but in reality the Deadline repository is just a ‘simple file server.’ So design

decisions used to build and scale SAN or NAS are worth considering.

Link Aggregation

Even with a manageable oversubscription rate you can come to the situation where the

Deadline server becomes overloaded (such as constant 100% farm utilization). In this

scenario the Deadline Monitor application will become sluggish and job render times will incur

a lag penalty. Deadline Slave is smart enough to minimize this lag, but under extreme work

loads even the best optimization becomes strained.

One way to simply increase capacity is to trunk or bond multiple network interfaces on the

repository server (as depicted in figure 2). There are many ways to accomplish this. Though if

your network switching fabric supports it, a LAG (link aggregation group) is the preferred

method. A LAG is a layer-2 protocol where traffic is balanced across multiple interfaces and is

addressable by a single IP address. The load balancing of traffic across the aggregated link is

LAG Group
(single IP & DNS name)

Render Farm Assets/Media

172.16.1.5
deadline.

Render
NodesWorkstations Infrastructure

Deadline
Repository

172.16.1.50-100 172.16.1.1-50172.16.1.100-150

© 2010 Prime Focus Soware 6

Figure 2. Simple Network with LAG grouping.

best determined by the device routing the traffic (which is usually a switch). Most, if not all,

server operating systems support link aggregation in some form with the most common being

802.3ad LACP (link aggregation control protocol). If you do not have a managed switch which

will allow for LACP trunking you can also opt for server based load balancing. This is not

optimal from a networking point of view it is an option. With link aggregation you can reduce

your oversubscription rate by a factor of the number of interfaces in the group. In the example

shown in figure two we’ve taken the 100:1 oversubscription (assuming everything links at

gigabit ethernet) and reduced it to 25:1. On paper this looks great though even with the best

load sharing algorithms and a tuned LACP hashing scheme you will not get a perfectly balanced

load across each interface.

Now if you are in the unfortunate scenario where you don’t have an LACP supported switch and

the repository host OS doesn’t support any form of aggregation or load balancing at the

interface level you can still use multiple interfaces. We will call this scenario “poor-man’s

trunking.” To accomplish this you put a number of network interfaces into your repository

server and assign each interface a unique address on the network. You then setup DNS on your

network such that the network name of the repository points to each of the IP addresses

assigned in a round-robin fashion (essentially multiple A records for the same host). In this

configuration every lookup for the name assigned to the repository will return a different IP

address in the set in a round-robin fashion. This lookup will persist for the cacheable lifetime

of the DNS lookup but it will definitely distribute hosts between the interfaces. The frequency

of lookups and the client name cache timing will define the level of load balancing. This is the

least preferred configuration, though in a pinch it can make a significant performance

enhancement while beer options are investigated.

VLANs

When dealing with large numbers of hosts and a high oversubscription rate another option to

consider is segmenting the network into virtual networks or VLANs. Segmenting a network

into VLANs can be done many ways, but a method we’ve seen much success with is by

segmenting the network by host function. In the simple render farm examples we’ve seen so

far we can segment the network into 3 pieces. We have workstations, render nodes and

infrastructure (as in servers and storage systems). We can then create three separate VLANs

which groups of hosts (corresponding to those three classifications) into VLANs which we will

assign a class C block of IP addresses as depicted in figure 3. This will or could (depending on

© 2010 Prime Focus Soware 7

configuration) isolate broadcast and unicast traffic which would also reduce switch processing

load.

In this configuration you can setup multiple interfaces on the repository server, (one for each

VLAN) and assign local addresses to each interface accordingly. This is a rather crude but

explicit technique to isolate and load balance traffic on a network.

This method requires your switching infrastructure to support VLAN tagging and if that isn’t

available this can be accomplished by using separate switches for each of the network

segments and having a router to move traffic between the physically separate networks.

VLANs are a means of virtually doing this and reducing equipment needs.

Pulse

Aer a few years of using Deadline for some rather intense projects/productions we grew

faster than our infrastructure could handle which gave us an opportunity to find some of the

‘low hanging fruit’ and optimize communication between render nodes and the repository.

Since the relationship between the slave instances and the repository is managed entirely with

small XML data files this can put a lot of strain on disk and network resources on the

repository directly correlative to the number of nodes in the farm. While development is

progressing towards a relational database backed repository component this load would still

need to be handled. At the time the obvious option was to abstract the repository from the file

system adding a middle ware layer to keep render nodes from touching the repository directly.

Workstation VLAN Render VLAN Media/Asset/Server
VLAN

172.16.3.5
deadline-workstation.local

172.16.2.5
deadline-render.local

172.16.1.5
deadline-server.local

One Interface , IP & NS
Per VLAN

172.16.3/24 172.16.1/24172.16.2/24

Render
NodesWorkstations Infrastructure

Deadline
Repository

© 2010 Prime Focus Soware 8

Figure 3. Segmented VLANs.

This was a terrible option as that would introduce a ‘server’ or ‘repository master’ relationship

completely invalidating the self-healing nature of the distributed queuing model.

The solution instead was to add support for a bolt-on proxy which would do that abstraction

and proxy job management (and subsequently other management functions). This solution is

called Deadline Pulse. The beauty of this option is that it is not required to have a functioning

render farm. If it fails (which is rare) the farm continues to manage and execute jobs though

while it is running it reduces the load on the repository back end (in the current case a file

server).

Without Pulse running the CPU load of a Deadline repository sky rockets. Under light load the

UNIX based load meter shows a load of less than 1 (which means there are less processes that

can be serviced in the run queue than there is capacity to run, essentially the idle loop). Under

heavy load (say >50 nodes rendering constantly) the UNIX load will jump to 4 or 5 (meaning

there are 5 processes waiting in the run queue per scan). Once you get even larger we’ve seen

the load spike to 50+. When the load of the machine is this high interactivity of the Deadline

Monitor application gets sluggish, there is delay in job pickup and finalizing. The repository is

still functioning through it is essentially overloaded. Using a Windows based repository you

will see the CPU constantly at 100% under task manager with kernel time making up 70%+ of

that total. The solution to this is just a simple as running a Deadline Pulse server on another

host. Deadline Pulse will act as an intermediary proxy for job submission and interactive

Deadline Monitor queries and will cut out the chainess of the CIFS protocol (by using an XML

based communication protocol) as well as reduce the easily cacheable file system queries (ie.

the meta-data lookups).

Regardless of the type or scale of the farm it is highly recommended to run Deadline Pulse if

you have the hardware to spare. For medium to large farms we would go so far as to say it is

required for efficient operation and productivity of your resources.

Repository Server Design

Once you have your network design as optimized as your infrastructure allows you should

consider how you are building your repository server itself. For the budget conscious, an

extremely capable and performant repository can be put together for very lile money. The

hardware requirements for a Deadline repository is rather insignificant though spending a few

© 2010 Prime Focus Soware 9

extra resources on a specific set of key components can make a world of difference and allow

for significant scaling with minimal effort.

Operating System

Since Deadline is hosted primarily off a network file share, the operating system of choice is

largely open to whatever your environment and infrastructure can handle and support. The

most popular operating system by far is Windows Server with a minimum suggested version of

Windows 2000 Advanced Server. Linux with Samba and NFS is definitely another option as is

FreeBSD, Solaris and Mac OS X. It is safe to say that any operating system with some form of

network file share that clients can address via a UNC will be adequate for hosting a repository.

At Prime Focus our North American facilities host our repositories on FreeBSD (currently 7.2

with plans to migrate to 8.1). For the purposes of this document we will cover Windows and

FreeBSD though many considerations given to FreeBSD are applicable to other UNIX like

operating systems since the application layer is essentially identical.

Windows Hosted

The first and only major concern with a Windows based repository is the maximum number of

open sockets for the network file share. Assuming you have a enough CALs for all your render

nodes and workstations there isn't too much tweaking needed (or even available) aside from

tuning the network stack. The non-server class connection limit is the reason Windows Server

is suggested, though if you only have a handful of nodes and clients (that is less than 10) you

can use the desktop versions of Windows as well though your millage will vary.

We do not suggest multitasking (or hosting multiple services) on a deadline server due to the

volume of sustained IO requests. Under a heavy load, it is not uncommon to see the CPU usage

pegged almost totally in kernel calls. CIFS can be extremely chay and under high numbers of

simultaneous connections the network interface will generate Interrupt storms such that the

machine will spend the majority of it's servicing the network controller driver. Jumbo frames

may marginally help bring the packet rate (and therefore interrupt rate) down though we

expect that gain to be marginal relative to volume.

That being said it is highly recommended that you run the Deadline Pulse service on a separate

host than the repository. Just running Pulse will net 70-80% less load on the repository when

job scheduling and repository scans (via Deadline Monitor) are substantial.

© 2010 Prime Focus Soware 10

FreeBSD and UNIX Hosted

Just as in a Windows environment keeping the running services to a minimum is highly

recommended. A stock install of FreeBSD and Samba 3 is all you need to get up and running. If

you are wanting to run Pulse on a UNIX host you will need to also install Mono 2.6 and have a

running X11 environment. If you are not using pre-built packages or are given a choice then we

would recommend not building in CUPS support (for printing), ACL extensions or LDAP

support. It does however help to build in support for the VFS modules especially the audit

module which is very helpful when debugging file share issues. You don't need to enable these

by default but having them on hand is invaluable in a pinch.

The Samba configuration is best kept to a minimum though tweaking the IP options to at

minimum of TCP_NODELAY is suggested. If you are going to have Mac OS clients you will need

to turn off UNIX extensions due to a bug in the Samba support OS X ships with. The single best

feature to enable is sendfile as this will greatly simplify the IO path and maximize throughput.

Included below is a complete Samba configuration file (Figure 4, smb.conf) that is used in

production on a heavily loaded network.

© 2010 Prime Focus Soware 11

Once Samba is installed and running we can focus on the kernel optimizations. There are a few

notable sections to consider. The first is the file descriptor and process sysctls. Under high

simultaneous connection rates you can expect many open smbd processes and at a minimum

they will require at least four file descriptors. While recent versions of FreeBSD is very good

at auto tuning this it is something to keep in mind as the stock distribution is tuned for a

general purpose multiple user server. The other section of note is the network stack sysctls.

These are a bit harder to tune as you need to calculate values relative to expected and

maximum load to avoid resource exhaustion. Below (in Figure 5), is a sample set of explicitly

set sysctls (/etc/sysctl.conf) for FreeBSD 7.2.

© 2010 Prime Focus Soware 12

[global]
 workgroup = DOMAIN
 hosts allow = 172.16.0.0/255.255.255.0
 server string = Deadline Repository
 security = share
 log file = /var/log/samba.log
 max log size = 1024
 local master = No
 stat cache = yes
 strict sync = no
 use sendfile = yes
 domain master = No
 write cache size = 524188
 read raw = yes
 write raw = yes
 dead time = 15
 wins support = Yes
 name resolve order = hosts bcast
 dns proxy = No
 getwd cache = yes
 large readwrite = yes
 stat cache = yes

[repository]
 path = /mnt/ssd/repository_4
 guest ok = yes
 guest only = yes
 writeable = yes

Figure 4. /usr/local/etc/smb.conf

CPU

The CPU is the least important part of a Deadline Repository server. While you can technically

use anything we recommend at least some form of multiprocessor support whether it be a

multicore or multiprocessor system. Under a high load an SMP environment allows for at least

one processor to be available for interactivity which is doubly important when hosting under

Windows. In this load situation we find Windows on a single processor system to be sluggish

and unresponsive but this effect is far less in an SMP environment. When the system task (or

kernel) is heavily loaded it tends to monopolize on one processor, so the UI message pump is

free to run on other processors, which is far easier to interact with. On UNIX hosts this isn't as

much of a concern as the shell (and SSH session) is scheduled with the same or beer priority

as the many samba processes so it doesn't feel as sluggish, but if SMP support is decent as is

in FreeBSD 7+ and Linux 2.6+ then the extra resources will be felt by beer interactivity at the

client end.

© 2010 Prime Focus Soware 13

$FreeBSD: src/etc/sysctl.conf,v 1.8 2003/03/13 18:43:50 mux Exp $
#
This file is read when going to multi-user and its contents piped thru
``sysctl'' to adjust kernel values. ``man 5 sysctl.conf'' for details.
#

Uncomment this to prevent users from seeing information about processes
that
are being run under another UID.
#security.bsd.see_other_uids=0
kern.ipc.maxsockbuf=8388608
net.inet.tcp.sendspace=65535
net.inet.tcp.recvspace=65535
net.inet.tcp.delayed_ack=0
vfs.hirunningspace=5242880
vfs.lorunningspace=5242880
net.inet.tcp.local_slowstart_flightsize=65535
kern.maxfilesperproc=2048
kern.ipc.somaxconn=4096
kern.maxfiles=65536
kern.ipc.nmbclusters=65536
vfs.ufs.dirhash_maxmem=10485760
net.link.ether.inet.log_arp_wrong_iface=0

Figure 5. /etc/sysctl.conf

We do not recommend the budget style processors (such as the Celeron or Sempron lines) as

they tend to skimp on L2 cache which is important for highly repetitive tasks like file serving.

At the other end of the spectrum is the heavy biers like the Intel Xeon line. These processors

are overkill for this kind of server as CPU load will be very minimal under UNIX and nominal (on

secondary processors/cores) under Windows.

When making a CPU choice we recommend using the midrange processors and choose high

bandwidth chipsets to keep the memory path from being a bole neck especially for bulk DMA

transfers between storage and network interfaces.

Memory

Memory size and choice is more important in a Windows environment than under UNIX. As

stated previously faster memory is worth more in this server scenario than quantity. ECC RAM

is suggested if the budget allows. The amount and variety of DIMMs should be matched to the

chipset chosen for maximum performance. For instance, for some Opteron multiprocessor

systems four sticks of matched DDR will perform beer than a single matched pair. As one can

dedicate a DDR pair per processor. This doesn't necessarily hold true for Intel's i7 QPI

platform. When designing a new system refer to the chipset documentation for

recommendations on memory configuration.

For Windows we recommend 2 gigabytes of RAM as is usually recommended for Windows

server platforms. In UNIX you can get away fine with a single gigabyte of RAM though like in

Windows, there are a few scenarios such as tuning file system and buffer caches would make

use of and perform beer with more RAM. This is doubly so if ZFS is chosen as the file system.

If you are in the over clocker crowd, you can setup a memory based file system strategy on top

of a repository to maximize IOPS, though that is a very advanced topic.

Storage

Storage is definitely where we suggest the bulk of your budget. A slow system with fast

storage will run circles around a fast system with nominal speed storage. Since a Deadline

repository is essentially a file server the system should be tuned for high IOPS with small block

random access. The highest hit rate files will be the 'slaveInfo' and 'job task' files which tend to

be very small but are accessed very frequently. If storing scene files on the server (which is

default) they can range in size from 10's of kilobytes to hundreds of megabytes. The access

© 2010 Prime Focus Soware 14

rate of scene files is far lower than that of the job queue and slave information files so

optimizing for bulk file transfers will only net marginal performance gains for the average case.

Server grade SSD's are a fantastic choice for this kind of file system load though commodity

SSDs with slow write performance are to be avoided. We use and recommend the Intel X25-E

and X25-M drives with an OS that supports the TRIM SATA extensions. Other manufacturers

and drive controllers like some of the higher grade Indilinx and SandForce controllers look to

be a competing product though we have not tried or tested those internally as of yet so your

mileage may vary.

If SSD's are outside your budget then you must stick with 'spinning metal' and we recommend

at least a 10,000 RPM disk or beer. We can't stress enough how disk speed will affect

performance under load. In a pinch a stripe of 7200 RPM disks will suffice but once you factor

in the cost of a decent RAID controller you come close to the opportunity cost of an SSD.

Finally it is recommended that the volume you store the repository is separate from the

operating system install to dedicate and segregate IOPS to file serving over local disk traffic

such as soware startup or virtual memory management operations.

RAID

For server environments RAID is almost always a concern. In the case of a Deadline repository

we do not recommend any of the RAID types that involve parity calculation. Parity calculation

will floor maximum throughput on storage controllers as we've seen previously with 3ware

controllers. For this environment RAID-10 is the recommended production configuration

balancing speed with fault tolerance, though internally we have had a lot of success with

RAID-0 stripes (of SSDs) that is periodically backed up to a different volume (such as a two

disk RAID-1 mirror of 7200 RPM 'spinning metal') as this balances cost and performance.

As far as RAID controllers go, we heavily suggest using dedicated hardware with dedicated

cache memory as opposed to soware assisted or soware RAID. That isn't to say it isn't a

good choice but it will not be as performant or reliable. We have used a Windows soware

based RAID-10 with SCSI disks in production with a lot of success for years before we

converted to using SSDs in our repositories.

Depending on the controller and the disk scheduling algorithm choosing a small stripe size (32

or 64 kilobytes) is preferred due to there being a very small average file size and high volume

small block commit paern to the disk systems.

© 2010 Prime Focus Soware 15

SSD/SAS/SATA/SCSI

The kind of disk you choose will have a dramatic result on repository performance. While we

suggest SSDs we understand that being a new and expensive technology it isn't always

available. That being said we do not recommend or suggest IDE based storage systems due to

their implementation and control protocols not being designed for the high IOP rate that you

can expect. At minimum we suggest a SATA disk and controller which supports Native

Command Queuing (NCQ). If you have some fast SCSI disks lying around that is also a very

good option.

SAN/NAS

Deadline repositories are one application that doesn't make sense to run from a SAN. While

some SANs or similar style NAS (like Isilon or BlueArc) have some compelling load and caching

systems, the rather low average file size and excessively random access do not suit a block

based SAN scenario. The key to Deadline performance is fast small random access, not bulk

transfer. If the SAN resources were dedicated to the repository it could be used effectively,

but I would recommend puing your budget towards SSDs over SAN HBAs.

© 2010 Prime Focus Soware 16

Suggested Configurations

Small Render Farm

For the purposes of this recommendation, we are going to define a small render farm as a total

of 10 render nodes and workstations combined. In this special case the load will never be too

extreme allowing us latitude on many of the performance variables.

Almost any ‘off the shelf’ PC you can find in a store would suffice though to be specific:

Intel Core 2 Duo

4 GB of RAM

A single 7200 RPM disk for the Operating System and tools. While we suggest FreeBSD or

Windows server as the Operating System you can prey much use whatever you have on hand

though remember the 10 client maximum for non-server based Windows systems.

A secondary 7200 RPM disk on a separate controller for the deadline repository. Feel free to

add another and if the motherboard supports it using another drive in a RAID mirror is a decent

idea though I would heavily suggest testing and forcing a failure before puing into service (to

practice a repair scenario should the worst happen).

On the networking side of things we can be just as flexible. A decent gigabit switch is all that is

required though if you can spring for a managed switch that can be handy debugging network

issues or monitoring state. Having a Deadline Pulse server is not explicitly required here

though planning for it should things get a bit sluggish is a good idea.

Medium Render Farm

A medium farm would be between 10 and 100 render nodes and workstations combined. Load

and contention can slow things down. The basic CPU and RAM and Operating System

requirements are the same as in a small farm though we will need to focus on storage. The very

first change we will make is to have a Deadline Pulse server. This will reduce your network load

almost logarithmically just by running this proxy service. Most of the Deadline queue

management and job delegation will be done via a non file-system line protocol (a specialized

© 2010 Prime Focus Soware 17

web service essentially). Using Deadline Pulse will also allow you to enable power

management (assuming your machines are setup for Wake On LAN) and thermal management

support (assuming you have an SNMP capable temperature sensor). Any basic server class

system will be adequate for running a Deadline Pulse server though gigabit-ethernet is

HEAVILY recommended.

On the storage end I would suggest a small but fast SSD. The Intel X25-E or X25-M SSD’s are a

fantastic choice. If you only use one that is totally fine though I would suggest adding a 7200

RPM disk to periodically backup the repository.

On the networking front, a decent switch will go a long way and if you have a managed switch

which supports LAG a dual port LAG group would be a nice touch. You can expand that lag

group if you find that two links are proving to be overloaded. Assuming you are starting from

scratch, seing up a ‘jumbo frame clean’ network (that is a network in which EVERY host on

that network supports and has jumbo frames enabled) will also reduce network load.

Large Render Farm

A large render farm consists of hundreds of render nodes and workstations. Surprisingly the

CPU and RAM requirements still hold but yet again we need to focus on networking and

storage to get the most performance out of the farm.

A high end storage system whose focus is on a high number of random access IOPs is essential.

A striped RAID group of SSDs can accomplish this (up to the limit of the controller’s bus

bandwidth). If your budget can support it, specialized storage systems like the FusionIO Duo

controllers are a fantastic choice. They are essentially giant (in terms of storage) and

extremely fast SSDs aached to a PCI-Express bus. The advantage here is bypassing the

SATA bole neck at the cost of having to run a special driver for the device. In this case your

limited to using Windows or Linux (we’ve been informed FreeBSD drivers for FusionIO devices

are immanent) .

If you are going to use a RAID controller choose one that won’t bole neck the SSDs. RAID

controllers are designed and optimized for ‘spinning metal’ drives and have timing and caching

designed around that limitation. While is most cases this won’t be an issue some tricks in use

by some cheaper RAID controllers can lead to some odd and hard to debug throughput

problems. The LSI/PERC and 3ware controllers are prey decent choices in this category.

In production in Prime Focus VFX is to use a PERC based RAID controller with 2 Intel based

SSDs in a striped configuration as well as two SAS 15,000 RPM drives mirrored and which is

© 2010 Prime Focus Soware 18

setup to backup the SSD stripe on an hourly basis (remember stripes have NO redundancy so

some preventative maintenance is in order).

On the networking side, we have to pull out all the stops. As discussed in the Network Design

section of this document a large render farm should be a hybrid of the trunked (LAG) and

segmented networks (ie. Figure 3). At Prime Focus VFX the network is segmented to isolate

workstation, infrastructure and render nodes. The Deadline repository is hosted on a 10

gigabit segment with the Pulse server hosted off the render node segment on single gigabit

ethernet. The render nodes are trunked to a core switch via leaf switches with multiple 10

gigabit uplinks.

To go further you can implement multiple Deadline repositories such that a production render

farm’s repository can be completely isolated from workstations and artists and all of it’s

infrastructure optimized for that isolation. Render nodes (currently) can only be a member of

one repository at a time so spliing a chunk of the render farm for production work and the

rest for the bulk rendering is required though it will reduce to competition for resources on

your network as a whole (not just deadline).

For the ‘overclocking crowd’

For extra points (and some serious fun) you can build a hybridized repository where the bulk of

your repository persists on an SSD (or RAID set) and the most frequently accessed meta-data

is hosted off a memory based (that is in RAM) file system. This is more ‘dangerous’ than doing

a simple RAID stripe so you’ll have to plan for periodic backups and develop a means to pre-

populate the memory based file system on system start up but in a pinch where specialized

storage is not available (because it’s pricey) this can be a life saver.

Doing this is le to an exercise for the reader. Note this is not easily done in Windows as you

can’t easily mount drives inside the file system of another existing volume. In UNIX based

system this can be accomplished by seing the mount point of the memory based file system

inside the mount point of the disk repository mount or ‘union’ mounting the file system on top

of the existing repository mount point.

Let’s look at the layout of a production Deadline Repository. Below (in Figure 6) is the contents

of the repository.

© 2010 Prime Focus Soware 19

The bulk of the repository is in the jobs, jobsArchived and reports folders. These aggregate

over time and grow/shrink relative to the rate of production. Reports accumulate on every job

as well if your repository is set to keep a copy of the scene files with the job meta-data (which

is highly recommended) then the the jobs folder will grow and shrink quickly and usually

unexpectedly. These folders need fast bulk access but they are too big for a memory based file

system. However you will notice the folders highlighted in blue (namely bin, clientSetup,

limitGroups, plugins, pulse, scripts, seings, slaves submission, users) are much smaller and

can be moved into a memory based file system prey reasonably. They do not grow and shrink

to the same scale as the larger folders previously noted. The slaves and users folders are the

most access folders in the repository (per unit of network throughput) so they are very

advantageous to store in a RAM based file system.

In production your milage will definitely vary though in a pinch this could speed up user

interactivity considerably.

© 2010 Prime Focus Soware 20

Figure 6. Repository Distribution

Parting Words

It is our hope that this document gave you some insight on how to grow and manage the

resources to build a high performance Deadline based render farm. This guide was intended to

give our customers a beer insight into how the product works, how to make it scale and

chiefly to impart how to get the most of your investment in rendering infrastructure.

If you have any questions or comments regarding this document or the implementation of a

Deadline Render farm please visit our forums at:

 hp://support.na.primefocusworld.com/

Manuals for our products as well as personal support for our products can be found at:

hp://soware.primefocusworld.com/soware/support/deadline/

Thanks

A big thanks to the following people for helping review and build this material. Without them

and their enthusiasm to get this information out it would still be a dra in a ‘todo’ list.

Ryan Russell - Senior Deadline Developer

Cody Lee - Deadline Developer

Ian Fraser - Director of Research and Development

Dan Rosen - International Chief Technology Officer

© 2010 Prime Focus Soware 21

http://support.na.primefocusworld.com
http://support.na.primefocusworld.com
http://software.primefocusworld.com/software/support/deadline/
http://software.primefocusworld.com/software/support/deadline/

About Prime Focus

Who are we?

Prime Focus is a global Visual Entertainment Services group. We provide creative and

technical services to the Film, Broadcast, Commercials, Gaming, Internet and Media industries.

Visual Entertainment Services is a new definition for an industry where technology, visual

delivery platforms and content are converging and evolving.

What do we do?

We offer a genuine end-to-end solution from pre-production to final delivery including pre-

visualization, equipment hire, visual effects, video and audio post-production, Digital

Intermediate, soware, digital asset management and distribution.

Contact Us

North America: +1 323 461 7887

UK: +44 207 565 1000

India: +91 22 6715 5000

email: info@primefocusworld.com

© 2010 Prime Focus Soware 22

