
Draft Documentation
Release 1.6.1

Thinkbox Software

July 25, 2016

CONTENTS

1 Overview 1

2 Getting Started 3
2.1 Installation and Licensing . 3
2.2 Usage . 3

3 Concepts 5
3.1 Image . 5
3.2 Image File Channel Map . 6
3.3 ImageInfo . 7
3.4 Timecode . 8
3.5 Video . 8

4 Library Reference 11
4.1 Anchor . 11
4.2 AnnotationInfo . 12
4.3 ColorRGBA . 12
4.4 CompositeOperator . 13
4.5 FontTypeMetric . 14
4.6 Image . 14
4.7 ImageInfo . 22
4.8 LibraryInfo . 23
4.9 LUT . 24
4.10 Timecode . 26
4.11 TileAssembler . 27
4.12 Video . 28

5 Cookbook 33
5.1 Introduction . 33
5.2 Basic Operations . 34
5.3 Intermediate Operations . 46
5.4 Advanced Operations . 59
5.5 Deadline Integration . 61
5.6 Color Operations . 68

6 Release Notes 73
6.1 Draft 1.5.3 . 73
6.2 Draft 1.4.3 . 74
6.3 Draft 1.3.2 . 75
6.4 Draft 1.2.3 . 75
6.5 Draft 1.1.1 . 76

i

6.6 Draft 1.1.0 . 77

Index 79

ii

CHAPTER

ONE

OVERVIEW

Draft is a lightweight compositing and video processing tool designed to automate typical post-render tasks. It is
implemented as a Python library, which exposes functionality for use in python scripts. Draft is designed to be tightly
integrated with Deadline, but it can also be used as a standalone tool.

1

Draft Documentation, Release 1.6.1

2 Chapter 1. Overview

CHAPTER

TWO

GETTING STARTED

2.1 Installation and Licensing

2.1.1 Installation

The installers for Deadline include Draft, but we do release Draft builds independently of Deadline. You can always
download and (re)install a newest build of Draft. All you should need to do is to extract the .zip file containing the
newest build in your Deadline Repository under the draft folder. The slaves will automatically sync up new versions
of Draft to their local working folders when needed.

2.1.2 Licensing

It is important to note that Draft requires a license separate from Deadline. Draft and Quick Draft are both licensed by
the same and FlexLM FEATURE draft in your Thinkbox license file. Draft and Quick Draft are free for users with
an active Deadline annual support and maintenance contract.

The majority of Draft features require only that a license be present. Actual checkout of licenses happens only while
videos are being encoded or decoded. A Draft Pro license (FEATURE draft-pro-codec) is only required if you
are encoding to the 3rd party Avid DNxHD codec.

2.2 Usage

In order to get you familiar with Draft, many code snippets can be found in the Cookbook. Additionally, Draft sample
scripts can be found in the Draft install directory under the Samples folder.

2.2.1 Submitting Draft Jobs To Deadline

There are many ways to submit Draft jobs to Deadline. As always, you can simply submit a Draft job from within the
Monitor from the Submit menu. In addition, we’ve also added a right-click job script to the Monitor, which will allow
you to submit a Draft job based on an existing job. This will pull over output information from the original job, and
fill in Draft parameters automatically where possible.

When submitting jobs to Deadline through many of our submitters, you have the option to have Deadline create a
dependent Draft Job once the submitted job has finished rendering. You can either use the Quick Draft settings, which
use a general Draft Template script that ships with Deadline, or you can specify a custom Template script.

For more information, consult the Deadline Documentation. Specifically, the section Draft in Application Plugins and
Draft / Quick Draft in Event Plugins can be very useful.

3

http://docs.thinkboxsoftware.com

Draft Documentation, Release 1.6.1

2.2.2 Draft Python Library

Draft can be used outside of Deadline (it still requires a draft license). In order to import Draft successfully,
you will need to ensure Python knows where to look for the Draft module, either by including its install directory
in the PYTHONPATH environment variable, or by appending it to os.sys.path before you do the import. You
will also need to set the MAGICK_CONFIGURE_PATH and LD_LIBRARY_PATH (or DYLD_LIBRARY_PATH)
environment variables to point to your install directory; this is so that ImageMagick knows where to find its ‘type.xml’
file. If you are simply planning on using Draft through Deadline, however, you do not need to worry about this at all.

If using Deadline’s Python, ensure you use these paths to instantiate dpython as they ensure the Deadline environment
is setup correctly:

• Windows: C:\Program Files\Thinkbox\DeadlineX\bin\dpython.exe

• Mac OS X: /Applications/Thinkbox/DeadlineX/Resources/dpython

• Linux: /opt/Thinkbox/DeadlineX/bin/dpython

where X is the MAJOR version of Deadline.

Setting Environment Variables

All platforms need specific environment variables to be set for Draft Standalone (Python) to successfully import
Draft:

• Windows:

PYTHONPATH=/path/to/Draft install directory/Windows/XXbit
MAGICK_CONFIGURE_PATH=/path/to/Draft install directory/Windows/XXbit

where XX is either 32 or 64.

• Mac OS X:

PYTHONPATH=/path/to/Draft install directory/Mac
MAGICK_CONFIGURE_PATH=/path/to/Draft install directory/Mac
DYLD_LIBRARY_PATH=/path/to/Draft install directory/Mac

• Linux:

PYTHONPATH=/path/to/Draft install directory/Linux/64bit
MAGICK_CONFIGURE_PATH=/path/to/Draft install directory/Linux/64bit
LD_LIBRARY_PATH=/path/to/Draft install directory/Linux/64bit

4 Chapter 2. Getting Started

CHAPTER

THREE

CONCEPTS

3.1 Image

3.1.1 Overview

A Draft.Image holds an actual image, along with the image’s width and height, its channel names and a file channel
map.

3.1.2 Implementation Details

In Draft, the method CreateImage() creates a new image and the method ReadFromFile() reads an image
from file. An image can be written to file using the method WriteToFile().

The image’s width and height are stored as properties. You can modify those properties using the method
Resize().

To get the image’s channel names, you can use the method GetChannelNames(). You can also ma-
nipulate the image’s channels using the methods SetChannel(), HasChannel(), RemoveChannel(),
RenameChannel() and SetToColor().

A file channel map is used to specify on write and retrieve on read the bit depth and type of the image
channels. It is possible to access the file channel map using the methods SetFileChannelMap() and
GetFileChannelMap(). For more details, see the section Image File Channel Map in Concepts.

Beside the bit depth and type of the image channels, other image saving settings can be specified using
Draft.ImageInfo. Consult the section ImageInfo in Concepts for more information.

3.1.3 Relevant Cookbook Recipes

• Creating an Image

• Resize an Image

• Write an Image to File with a Specific File Channel Map

5

Draft Documentation, Release 1.6.1

3.2 Image File Channel Map

3.2.1 Overview

A file channel map is associated with a Draft.Image and is used to specify on write and retrieve on read the bit
depth and type of the image channels.

3.2.2 Implementation Details

A file channel map is represented using a dictionary. Each dictionary entry is made of two strings separated by a colon.
The first string corresponds to the channel name, typically ‘R’, ‘G’, ‘B’ and ‘A’, and the second string corresponds to
the channel bit depth. An ‘ui’ is appended to the bit depth string to specify that the channel represents an index and an
‘f’ to specify that the channel is of type float. Such a string represents a channel data type.

Here are some common valid channel data types: ‘8’, ‘16’, ‘16f’, ‘32f’ and ‘32ui’. When Draft creates an image or
add a new channel to an existing image, a default file channel data type of ‘8’ is assigned to the new channel(s).

A dictionary representing a file channel map can be passed to the function SetFileChannelMap() to set the
file channel map of a Draft.Image. Note that the dictionary must contain one entry for each channel present in the
Draft.Image and for those channels only. An error will be thrown otherwise.

A dictionary is returned by the function GetFileChannelMap() to retrieve the current file channel map of a
Draft.Image.

Internally, Draft is still storing image channel data using 32 bit floats.

Valid Channel Data Types

It is important to understand that each file format only supports specific bit depth and type. Here’s a list of the valid
channel data types supported by Draft for common file formats:

File Format Channel Data Type
BMP 8
CIN 10
DPX 8, 10, 12, 16
EXR 16f, 32f, 32ui
GIF 8
HDR 16
JPEG/JPG 8
PNG 8, 16
TGA 5*, 8
TIF/TIFF 8, 16

* Writing a TGA image file with a channel data type of ‘5’ corresponds to ImageMagick’s 16-bit TGA – 5*3 + 1.

While Draft supports specifying the file channel map for other file formats, correct results are not guaranteed.

3.2.3 Relevant Cookbook Recipes

• Write an Image to File with a Specific File Channel Map

• Write an Image to File with a Maximum Bit Depth

6 Chapter 3. Concepts

Draft Documentation, Release 1.6.1

3.3 ImageInfo

3.3.1 Overview

A Draft.ImageInfo object is used to specify on write and retrieve on read the image’s compression, quality, tile
size and Timecode, when applicable.

3.3.2 Implementation Details

Besides the image’s channel data type described in the section Image File Channel Map in Concepts, other im-
age saving settings can be controlled. Unlike the file channel map, those saving settings are not associated with a
Draft.Image but with a Draft.ImageInfo. An ImageInfo stores those saving settings using the four prop-
erties: compression, quality , tileSize and timecode.

To specify the saving settings, you can simply set those properties in an ImageInfo and pass that ImageInfo as
an additional parameter in the function WriteToFile().

To retrieve the saving settings, you can pass an ImageInfo as an additional parameter in the function
ReadFromFile() and the fields in ImageInfo will be automatically populated. Those fields can then be eas-
ily queried.

Valid Compression Values

Valid values for compression are summarized in the following table.

File Format Valid compression
EXR ‘none’, ‘rle’, ‘zip’, ‘zips’, ‘piz’, ‘pxr24’, ‘b44’, ‘b44a’, ‘dwaa’ and ‘dwab’
GIF ‘lzw’
HDR ‘rle’
JPEG/JPG ‘jpeg’
PNG ‘zip’
TGA ‘none’ and ‘rle’
TIF/TIFF ‘none’, ‘jpeg’, ‘lzw’, ‘rle’ and ‘zip’

The property compression defaults to ‘default’ which corresponds to the file format default.

Valid quality values are integer value in the range [0..100]. The property quality defaults to None and is only valid for
format EXR and JPEG/JPG.

Note that the mapping between Draft and OpenEXR DWA quality is done using an exponential regression to fit
the three points proposed by Karl Rasche (creator of DWA). See: https://lists.nongnu.org/archive/html/openexr-
devel/2014-08/msg00049.html

Valid tileSize values are tuples of size 2 of strictly positive integers. The property tileSize default to None which
corresponds to non-tiled image and is only valid for the file format EXR.

Please, consult the section Timecode in Concepts for valid timecodes values.

3.3.3 Relevant Cookbook Recipes

• Set Saving Settings in an Image File

• Embed a Timecode in an Image File

• Embed a Timecode in a Video File

3.3. ImageInfo 7

https://lists.nongnu.org/archive/html/openexr-devel/2014-08/msg00049.html
https://lists.nongnu.org/archive/html/openexr-devel/2014-08/msg00049.html

Draft Documentation, Release 1.6.1

3.4 Timecode

3.4.1 Overview

A Draft.Timecode is used to embed on write and extract on read a timecode in a DPX or EXR image file or in a
video file.

3.4.2 Implementation Details

A Timecode object stores the hours, the minutes, the seconds and the frame associated to a timecode as described in
SMPTE standard. In addition, a flag indicating whether the Timecode object represents a non-drop frame or a drop
frame timecode is stored.

A Timecode is created using a string with format hh:mm:ss:ff for non-drop frame timecode and hh:mm:ss;ff for drop
frame timecode, where hh indicates the hours in the range [0..23], mm the minutes in the range [0..59], ss the seconds
in the range [0..59] and ff the frame in the range [0..59].

In the case of a DPX or EXR image file, a Draft.ImageInfo can be used to embed or to extract a Timecode. In
the case of a video file, the Timecode to be embedded can be specified when creating a Draft.VideoEncoder
and a Draft.VideoDecoder has a timecode property that can be used to extract the embedded timecode.

3.4.3 Relevant Cookbook Recipes

• Embed a Timecode in an Image File

• Embed a Timecode in a Video File

3.5 Video

3.5.1 Overview

A Draft.VideoEncoder is used to create videos and a Draft.VideoDecoder is used to extract frames from
videos.

3.5.2 Implementation Details

Video Encoder

When creating a Draft.VideoEncoder you can specify many parameters including the video’s framerate,
kbit rate and codec. For a complete list, please consult the constructor VideoEncoder(). Once your
Draft.VideoEncoder is created, you can encode each frame using the method EncodeNextFrame().

Supported Codecs

Draft supports multiple codec options. They include:

• MPEG4 (default)

• MJPEG

8 Chapter 3. Concepts

Draft Documentation, Release 1.6.1

• DNxHD® (requires a “Draft Codec Pack” license)

• H264

• RAWVIDEO

Valid Avid DNxHD® Settings

It’s important to remember that when you’re encoding with Avid DNxHD® you must use a specific set of parameters.
Here is a table of all the Avid DNxHD® settings that work with Draft.

width height fps kbitRate
1920 1080 59.94 440000
1920 1080 59.94 290000
1920 1080 59.94 90000
1920 1080 50 365000 *
1920 1080 50 240000 *
1920 1080 50 75000 *
1920 1080 29.97 220000
1920 1080 29.97 145000
1920 1080 29.97 45000
1920 1080 25 185000 *
1920 1080 25 120000 *
1920 1080 25 36000 *
1920 1080 24 175000 *
1920 1080 24 115000 *
1920 1080 24 36000 *
1920 1080 23.976 175000
1920 1080 23.976 115000
1920 1080 23.976 36000
1280 720 59.94 220000
1280 720 59.94 145000
1280 720 50 180000
1280 720 50 120000
1280 720 29.97 110000
1280 720 29.97 75000
1280 720 25 90000
1280 720 25 60000
1280 720 23.976 90000
1280 720 23.976 60000

* Draft supports writing MXF files for these combinations only

Video Files Concatenation

It’s possible to concatenate video files using the function ConcatenateVideoFiles() by providing a list of input
files and an output file. Note that the input files must all share the same codec and all have the same file extension than
the output file.

Video Decoder

When creating a Draft.VideoDecoder you must specify the filename of the video you want to decode. Once
your Draft.VideoDecoder is created, you can decode each frame using the method DecodeNextFrame().

3.5. Video 9

Draft Documentation, Release 1.6.1

3.5.3 Relevant Cookbook Recipes

• Create a QuickTime Movie

• Concatenate Video Files

• Change the Encoding of a Movie Clip

• Split a Movie into Single Frames

10 Chapter 3. Concepts

CHAPTER

FOUR

LIBRARY REFERENCE

4.1 Anchor

class Draft.Anchor
This enum contains the different values that can be provided to functions that require positional anchor argu-
ments.

Center = Draft.Anchor.Center

East = Draft.Anchor.East

North = Draft.Anchor.North

NorthEast = Draft.Anchor.NorthEast

NorthWest = Draft.Anchor.NorthWest

South = Draft.Anchor.South

SouthEast = Draft.Anchor.SouthEast

SouthWest = Draft.Anchor.SouthWest

West = Draft.Anchor.West

Sample Code:

anchor = Draft.Anchor.NorthWest

Anchor replaces the now-deprecated PositionalGravity enumeration:

class Draft.PositionalGravity
Deprecated since version beta14: Please use Draft.Anchor instead.

This enum contains the different values that can be provided to functions that require positional gravity argu-
ments.

CenterGravity = Draft.PositionalGravity.CenterGravity

EastGravity = Draft.PositionalGravity.EastGravity

NorthEastGravity = Draft.PositionalGravity.NorthEastGravity

NorthGravity = Draft.PositionalGravity.NorthGravity

NorthWestGravity = Draft.PositionalGravity.NorthWestGravity

SouthEastGravity = Draft.PositionalGravity.SouthEastGravity

SouthGravity = Draft.PositionalGravity.SouthGravity

SouthWestGravity = Draft.PositionalGravity.SouthWestGravity

11

Draft Documentation, Release 1.6.1

WestGravity = Draft.PositionalGravity.WestGravity

4.2 AnnotationInfo

class Draft.AnnotationInfo((object)arg1)→ None
A class that contains properties used for textual annotations.

__init__((object)arg1) -> None

BackgroundColor
A Draft.ColorRGBA value denoting the background color. (Defaults to transparent.)

Color
A Draft.ColorRGBA value denoting the color of the text. (Defaults to white.)

DrawShadow
A boolean value denoting whether or not to draw a shadow around the text. (Defaults to false.)

FontMetric
A Draft.FontTypeMetric object used to retrieve font and text properties for the annotation. Its
values are set when the annotation is created.

FontType
A string value denoting the type of font to use. (Defaults to Adobe’s Source Sans Pro.)

Padding
A decimal value denoting the padding around the text. (Defaults to 0.0.)

PointSize
An integer value denoting the size of the font. (Defaults to 32.)

ShadowColor
A Draft.ColorRGBA value denoting the color of the shadow. (Defaults to black.)

Sample Code:

textInfo = Draft.AnnotationInfo()
textInfo.PointSize = 24
textInfo.FontType = "Helvetica"
textInfo.Color = Draft.ColorRGBA(0.75, 0.54, 0.975, 1.0)
textInfo.BackgroundColor = Draft.ColorRGBA(0.0, 0.0, 0.0, 0.0)

4.3 ColorRGBA

class Draft.ColorRGBA((object)arg1)→ None
This class represents a color, in RGBA format.

__init__((object)arg1) -> None

__init__((object)arg1, (float)R, (float)G, (float)B, (float)A) -> None

A
Decimal value representing the alpha component. Normally in the range from 0.0 to 1.0.

B
Decimal value representing the blue component. Normally in the range from 0.0 to 1.0.

G
Decimal value representing the green component. Normally in the range from 0.0 to 1.0.

12 Chapter 4. Library Reference

Draft Documentation, Release 1.6.1

R
Decimal value representing the red component. Normally in the range from 0.0 to 1.0.

Sample Code:

newColor = Draft.ColorRGBA(0.75, 0.54, 0.975, 1.0)

or:

newColor = Draft.ColorRGBA()
newColor.R = 0.75
newColor.G = 0.54
newColor.B = 0.975
newColor.A = 1.0

4.4 CompositeOperator

class Draft.CompositeOperator
This enum contains all the operators available when compositing images.

AddCompositeOp = Draft.CompositeOperator.AddCompositeOp

AtopCompositeOp = Draft.CompositeOperator.AtopCompositeOp

BumpmapCompositeOp = Draft.CompositeOperator.BumpmapCompositeOp

CopyBlueCompositeOp = Draft.CompositeOperator.CopyBlueCompositeOp

CopyCompositeOp = Draft.CompositeOperator.CopyCompositeOp

CopyGreenCompositeOp = Draft.CompositeOperator.CopyGreenCompositeOp

CopyOpacityCompositeOp = Draft.CompositeOperator.CopyOpacityCompositeOp

CopyRedCompositeOp = Draft.CompositeOperator.CopyRedCompositeOp

DifferenceCompositeOp = Draft.CompositeOperator.DifferenceCompositeOp

InCompositeOp = Draft.CompositeOperator.InCompositeOp

MinusCompositeOp = Draft.CompositeOperator.MinusCompositeOp

MultiplyCompositeOp = Draft.CompositeOperator.MultiplyCompositeOp

OutCompositeOp = Draft.CompositeOperator.OutCompositeOp

OverCompositeOp = Draft.CompositeOperator.OverCompositeOp

PlusCompositeOp = Draft.CompositeOperator.PlusCompositeOp

SubtractCompositeOp = Draft.CompositeOperator.SubtractCompositeOp

UndefinedCompositeOp = Draft.CompositeOperator.UndefinedCompositeOp

XorCompositeOp = Draft.CompositeOperator.XorCompositeOp

Sample Code:

compOperator = Draft.CompositeOperator.OverCompositeOp

4.4. CompositeOperator 13

Draft Documentation, Release 1.6.1

4.5 FontTypeMetric

class Draft.FontTypeMetric((object)arg1)→ None
A class to retrieve font and text properties for annotations.

__init__((object)arg1) -> None

Ascent
The distance in pixels from the text baseline to the highest/upper grid coordinate used to place an outline
point.

BaselineOffset
Offset in pixels from the bottom of the image to the baseline used to write the text. Use this to align text
from different point sizes and fonts.

Descent
The distance in pixels from the baseline to the lowest grid coordinate used to place an outline point. Always
a negative value.

MaxHorizontalAdvance
Maximum horizontal advance in pixels.

TextHeight
The height in pixels of the text written, this does not include any padding.

TextWidth
The width in pixels of the text written, this does not include any padding.

4.6 Image

class Draft.Image((object)arg1)→ None
The Draft.Image class contains all of Draft’s image-related functionality. It contains two types of func-
tions: Static functions, and Member functions. Static functions can be invoked without an instance (by call-
ing Draft.Image.<function name>), whereas Member functions require to be invoked from an instance of a
Draft.Image object (by calling <someImage>.<function name>).

The Static functions are used to create new instances of the Draft.Image class, whereas the Member functions
are used to modify pre-existing instances of the Draft.Image. The sample code snippets should clarify this
distinction function in case you are unsure.

static Anaglyph((Image)leftImage, (Image)rightImage, (str)anaglyphType)→ Image :
Returns an anaglyph of the specified type created from the two left/right input images.

Arguments:

leftImage A Draft.Image containing the left-eye image.

rightImage A Draft.Image containing the right-eye image.

anaglyphType A string value containing the anaglyph type; can be either “LSA” or “PS”.

Usage:

anaglyphImage = Draft.Image.Anaglyph(leftEye, rightEye, "LSA")

ApplyGamma((Image)self, (float)gamma)→ None :
Apply the specified gamma correction to the image.

New in version 1.1.

14 Chapter 4. Library Reference

Draft Documentation, Release 1.6.1

Arguments:

gamma A decimal value indicating the gamma that should be applied.

Usage:

someImage = Draft.Image.ReadFromFile("//path/to/some/image/file.png")
someImage.ApplyGamma(2.2)

Composite((Image)self, (Image)image, (float)left, (float)bottom, (CompositeOperator)operation) →
None :

Composites an image with the current image at the given location using the specified compositing opera-
tion.

Arguments:

image A Draft.Image that will be copied from.

left A float value that denotes how far from the left the composite operation should take place.

bottom A float value that denotes how far from the bottom the composite operation should take place.

operation A Draft.CompositeOperator enum value indicating the type of operation to perform.

Usage:

img1 = Draft.Image.CreateImage(800, 600)
img2 = Draft.Image.ReadFromFile("//path/to/image.png")
img1.Composite(img2, 0, 0.33, Draft.CompositeOperator.OverCompositeOp)

CompositeWithAnchor((Image)self, (Image)image, (Anchor)anchor, (CompositeOpera-
tor)operation)→ None :

Composites an image with the current image using the specified positional anchor to determine the location
of the image being composited.

Arguments:

image A Draft.Image that will be copied from.

anchor A Draft.Anchor enum value used to determine the location on the current image where Image
will be composited.

operation A Draft.CompositeOperator enum value indicating the type of operation to perform.

Usage:

img1 = Draft.Image.CreateImage(800, 600)
img2 = Draft.Image.ReadFromFile("//path/to/image.png")
compOp = Draft.CompositeOperator.OverCompositeOp
img1.CompositeWithAnchor(img2, Draft.Anchor.NorthWest, compOp)

CompositeWithGravity((Image)self, (Image)image, (PositionalGravity)gravity, (CompositeOpera-
tor)operation)→ None :

Deprecated since version beta14: Use Draft.Image.CompositeWithAnchor() instead.

Composites an image with the current image using the specified positional gravity to determine the location
of the image being composited.

Arguments:

image A Draft.Image that will be copied from.

gravity A Draft.PositionalGravity enum value used to determine the location of the image
being composited.

operation A Draft.CompositeOperator enum value indicating the type of operation to perform.

4.6. Image 15

Draft Documentation, Release 1.6.1

Usage:

img1 = Draft.Image.CreateImage(800, 600)
img2 = Draft.Image.ReadFromFile("//path/to/image.png")
compOp = Draft.CompositeOperator.OverCompositeOp
gravity = Draft.PositionalGravity.NorthWestGravity
img1.CompositeWithGravity(img2, gravity, compOp)

CompositeWithPositionAndAnchor((Image)self, (Image)image, (float)x, (float)y, (An-
chor)anchor, (CompositeOperator)operation) → None
:

Composites an image with the current image at the given location using the specified compositing operation
and positional anchor.

Arguments:

image A Draft.Image that will be copied from.

x A float value that denotes how far from the left (as a percentage of the width) to position the anchor for
the composite operation.

y A float value that denotes how far from the bottom (as a percentage of the height) to position the anchor
for the composite operation.

anchor A Draft.Anchor enum value used to determine the location of the image being composited.
The anchor specifies which location of the image being composited will be anchored at the location
specified by (x, y).

operation A Draft.CompositeOperator enum value indicating the type of operation to perform.

Usage:

img1 = Draft.Image.CreateImage(800, 600)
img2 = Draft.Image.ReadFromFile("//path/to/image.png")
compOp = Draft.CompositeOperator.OverCompositeOp
anchor = Draft.Anchor.NorthWest
img1.CompositeWithPositionAndAnchor(img2, 0, 0.66, anchor, compOp)

CompositeWithPositionAndGravity((Image)self, (Image)image, (float)x, (float)y, (Position-
alGravity)gravity, (CompositeOperator)operation) →
None :

Deprecated since version beta14: Use Draft.Image.CompositeWithPositionAndAnchor()
instead.

Composites an image with the current image at the given location using the specified compositing operation
and positional gravity.

Arguments:

image A Draft.Image that will be copied from.

x A float value that denotes how far from the left (as a percentage of the width) to position the anchor for
the composite operation.

y A float value that denotes how far from the bottom (as a percentage of the height) to position the anchor
for the composite operation.

gravity A Draft.PositionalGravity enum value used to determine the location on the current
image where Image will be composited.

operation A Draft.CompositeOperator enum value indicating the type of operation to perform.

Usage:

16 Chapter 4. Library Reference

Draft Documentation, Release 1.6.1

img1 = Draft.Image.CreateImage(800, 600)
img2 = Draft.Image.ReadFromFile("//path/to/image.png")
compOp = Draft.CompositeOperator.OverCompositeOp
gravity = Draft.PositionalGravity.NorthWestGravity
img1.CompositeWithPositionAndGravity(img2, 0, 0.66, gravity, compOp)

Copy((Image)self, (Image)image[, (int)left=0[, (int)bottom=0[, (object)channels=None]]]) → None
:

Copy the other image onto self, with the specified offset applied to the bottom left corner of image.

New in version 1.1.

Arguments:

image A Draft.Image that will be copied from.

left Optional. An integer number of pixels that denotes how far from the left the image should be offset.
(Default is 0.)

bottom Optional. An integer number of pixels that denotes how far from the bottom the image should be
offset. (Default is 0.)

channels Optional. A list of channels to copy from image to this image, or None. The channels must exist
in both images. If None, then both images must have the same channels, and all channels are copied.
(Default is all channels.)

Usage:

img1 = Draft.Image.ReadFromFile("//path/to/some/image.png")
img2 = Draft.Image.ReadFromFile("//path/to/other/image.png")
img1.Copy(img2, channels=['A'])

static CreateAnnotation((unicode)text, (AnnotationInfo)textInfo)→ Image :
Returns a new image consisting of the specified text. The provided Draft.AnnotationInfo object
describes the various text parameters. CreateAnnotation also sets the values in the AnnotationInfo object’s
Draft.FontTypeMetric property.

Arguments:

text A string value providing the contents of the annotation.

textInfo A Draft.AnnotationInfo value providing parameters describing how to draw the text.

Usage:

textInfo = Draft.AnnotationInfo()
textImage = Draft.Image.CreateAnnotation("Annotation text.", textInfo)

Note: In order to prevent clipping of certain characters in certain fonts, we added a small amount of
padding to the left and right edges of the image. The amount added is proportional to the font size, and
can be computed using:

math.ceil(0.16 * textInfo.PointSize)

static CreateImage((int)width, (int)height [, (list)channels=[’R’, ‘G’, ‘B’, ‘A’]])→ Image :
Returns a new image of the specified size with the specified channels (RGBA channels by default).

Arguments:

width An integer value denoting the width of the image to create.

height An integer value denoting the height of the image to create.

4.6. Image 17

Draft Documentation, Release 1.6.1

channels Optional. A list of channels to create in the image. (Defaults to [’R’, ‘G’, ‘B’, ‘A’].)

Changed in version 1.1: Added the optional channel parameter.

Usage:

newImage = Draft.Image.CreateImage(800, 600)

Crop((Image)self, (int)left, (int)bottom, (int)right, (int)top)→ None :
Crops the image to the given bounds.

Arguments:

left An integer value denoting the left bound of the crop.

bottom An integer value denoting the bottom bound of the crop.

right An integer value denoting the right bound of the crop.

top An integer value denoting the top bound of the crop.

Usage:

someImage = Draft.Image.CreateImage(800, 600)
someImage.Crop(100, 150, 200, 250)

GetChannelNames((Image)self)→ list :
Get a list of all the channels in the image.

New in version 1.1.

Arguments: (none)

Usage:

image = Draft.Image.ReadFromFile('image.png')
channelNames = image.GetChannelNames()

GetFileChannelMap((Image)self)→ dict :
Return a dictionary representing the image’s file channel map. Each dictionary entry is made of two strings
separated by a colon. The first string corresponds to the channel name, typically ‘R’, ‘G’, ‘B’ and ‘A’, and
the second string corresponds to the channel bit depth. An ‘ui’ is appended to the bit depth string to specify
that the channel represents an index, and an ‘f’ to specify that the channel is of type float.

New in version 1.5.

Arguments: (none)

Usage:

someImage = Draft.Image.ReadFromFile("//path/to/some/image/file.exr")
fileChannelMap = someImage.GetFileChannelMap()

HasChannel((Image)self, (str)channel)→ bool :
Determine whether a channel exists in the image. Returns True if the image has channel, and False other-
wise.

New in version 1.1.

Arguments:

channel The name of the channel to check for.

Usage:

18 Chapter 4. Library Reference

Draft Documentation, Release 1.6.1

image = Draft.Image.ReadFromFile('image.png')
if image.HasChannel('A'):

print 'image has an alpha channel'
else:

print 'image does not have an alpha channel'

Premultiply((Image)self)→ None :
Premultiply the image’s R, G, and B channels by the A (alpha) channel. The image is modified in-place.

Arguments: (none)

Usage:

someImage = Draft.Image.ReadFromFile("//path/to/some/image/file.png")
someImage.Premultiply()

static ReadFromFile((unicode)filename[, (ImageInfo)imageInfo=<Draft.ImageInfo object at
0x00000000041A6A98>])→ Image :

Returns a new image from a file on disk. Supports various image types determined by file extension.

Arguments:

filename A string value indicating where on the machine to find the image file.

imageInfo Optional. A Draft.ImageInfo that will be populated with properties from the image file.

Changed in version 1.1: Added the optional imageInfo parameter.

Usage:

imageFromFile = Draft.Image.ReadFromFile("//path/to/image/file.png")

RemoveChannel((Image)self, (str)channel)→ None :
Remove an existing channel from the image.

New in version 1.1.

Arguments:

channel The channel to set. Typical channels are ‘R’, ‘G’, ‘B’, and ‘A’.

Usage:

someImage = Draft.Image.ReadFromFile("//path/to/some/image/file.png")
if someImage.HasChannel('A'):

someImage.RemoveChannel('A')

RenameChannel((Image)self, (str)oldChannel, (str)newChannel)→ None :
Rename the existing specified channel in the image.

New in version 1.1.

Arguments:

oldChannel The name of the existing channel to copy from.

newChannel The name of the new channel to copy to. This channel must not exist in the image.

Usage:

image = Draft.Image.ReadFromFile('stereo.exr')
image.RemoveChannel('R')
image.RenameChannel('right.R', 'R')

4.6. Image 19

Draft Documentation, Release 1.6.1

Resize((Image)self, (int)width, (int)height[, (str)type=’fit’[, (str)border=’transparent’]])→ None :
Resizes the image to the given size.

Arguments:

width An integer value denoting the width to which the image will be re-sized.

height An integer value denoting the height to which the image will be re-sized.

type Optional. A string that specifies how the image data should be scaled to fit the new size. (Default is
‘fit’.) Valid type values are:

‘none’ Don’t scale the image data.

‘width’ Scale the image to fit the new width, without changing the aspect ratio.

‘height’ Scale the image to fit the new height, without changing the aspect ratio.

‘fit’ Scale the image as large as possible while staying inside the new image, without changing the
aspect ratio.

‘fill’ Scale the image as small as possible while covering the new image, without changing the aspect
ratio.

‘distort’ Scale the image to match the new width and height, changing the aspect ratio if necessary.

border Optional. A string that specifies how the border around a resized image should be set. (Default is
‘transparent’.) Border argument doesn’t do anything if the type is ‘fill’. Valid border values are:

‘transparent’ Set the border to be transparent.

‘stretch’ Stretch the left, right, top and bottom edges of the image to the edge of the resized frame.

Usage:

someImage = Draft.Image.CreateImage(800, 600)
someImage.Resize(1920, 1080)

or:

someImage = Draft.Image.CreateImage(800, 600)
someImage.Resize(1920, 1080, 'distort')

or:

someImage = Draft.Image.CreateImage(800, 600)
someImage.Resize(1920, 1080, 'fit', 'stretch')

SetChannel((Image)self, (str)channel, (float)value)→ None :
Set the channel to the given value. If the channel does not already exist, then it will be created.

Arguments:

channel The channel to set. Typical channel names are ‘R’, ‘G’, ‘B’, and ‘A’.

value The value to assign to the channel. Typically in the range from 0.0 to 1.0.

Usage:

someImage = Draft.Image.ReadFromFile("//path/to/some/image/file.png")
someImage.SetChannel('A', 1.0)

SetFileChannelMap((Image)self, (dict)fileChannelMap)→ None :
Set the image’s file channel map using a dictionary. A valid dictionary entry is made of two strings
separated by a colon. The first string corresponds to the channel name, typically ‘R’, ‘G’, ‘B’ and ‘A’, and

20 Chapter 4. Library Reference

Draft Documentation, Release 1.6.1

the second string corresponds to the channel bit depth. Append an ‘ui’ to the bit depth string to specify
that the channel represents an index, and an ‘f’ to specify that the channel is of type float.

New in version 1.5.

Arguments:

fileChannelMap A dictionary indicating the image’s file channel map.

Usage:

someImage = Draft.Image.ReadFromFile("//path/to/some/image/file.exr")
fileChannelMap = { 'R':'16f', 'G':'16f', 'B':'16f', 'ID':'32ui' }
someImage.SetFileChannelMap(fileChannelMap)

SetToColor((Image)self, (ColorRGBA)color)→ None :
Set the image to the given color.

Arguments:

color A Draft.ColorRGBA indicating the color that the image should be set to.

Usage:

someImage = Draft.Image.CreateImage(800, 600)
someImage.SetToColor(Draft.ColorRGBA(1.0, 0.0, 0.0, 1.0))

ToBytes((Image)self)→ str :
Get an ARGB32 string representing the image.

New in version 1.5.

Arguments: (none)

Usage:

someImage = Draft.Image.ReadFromFile("//path/to/some/image/file.png")
imageString = someImage.ToBytes()
imageQT = QImage(imageString, width, height, QImage.Format_ARGB32)

Unpremultiply((Image)self)→ None :
Reverse the effects of Premultiply: unpremultiply the image’s R, G, and B channels by the A (alpha)
channel. The image is modified in-place.

Arguments: (none)

Usage:

someImage = Draft.Image.ReadFromFile("//path/to/some/image/file.png")
someImage.Unpremultiply()

WriteToFile((Image)self, (unicode)filename[, (ImageInfo)imageInfo=<Draft.ImageInfo object at
0x00000000041A69E8>])→ None :

Writes the image to a file on disk. Supports various image types determined by file extension.

Arguments:

filename A string value indicating where to save the file to.

imageInfo Optional. A Draft.ImageInfo that will be populated with properties from the image file.

Changed in version 1.1: Added the optional imageInfo parameter.

Usage:

4.6. Image 21

Draft Documentation, Release 1.6.1

someImage = Draft.Image.CreateImage(800, 600)
someImage.WriteToFile("//path/to/save/location.png")

height
An integer value indicating the height of the image.

width
An integer value indicating the width of the image.

4.7 ImageInfo

class Draft.ImageInfo((object)arg1)→ None
A class that contains image file properties.

New in version 1.1.

__init__((object)arg1) -> None

compression
A string used to retrieve (on read) and set (on write) the compression of an image. Defaults to ‘default’
which corresponds to the file format default. Valid compression values are: ‘default’, ‘none’, ‘jpeg’, ‘lzw’,
‘rle’, ‘zip’, ‘zips’, ‘piz’, ‘pxr24’, ‘b44’, ‘b44a’, ‘dwaa’ and ‘dwab’.

New in version 1.4.

quality
An integer value in the range [0..100] used to retrieve (on read) and set (on write) the quality of an image.
Defaults to None which corresponds to the file format default.

New in version 1.4.

tileSize
A tuple used to retrieve (on read) and set (on write) the width and height of the tiles in an image. Defaults
to None for non-tiled images.

timecode
A Draft.Timecode object used to retrieve (on read) and set (on write) the timecode associated to an
image. Defaults to None.

New in version 1.5.

Usage:

To determine whether an EXR file is tiled:

imageInfo = Draft.ImageInfo()
image = Draft.Image.ReadFromFile('//path/to/test.exr', imageInfo=imageInfo)
if imageInfo.tileSize is None:

print "Image is not tiled"
else:

print "Image is tiled"

To write a tiled EXR file:

imageInfo = Draft.ImageInfo()
imageInfo.tileSize = (32, 32)

image = Draft.Image.CreateImage(1920, 1080)
image.WriteToFile('//path/to/out.exr', imageInfo=imageInfo)

22 Chapter 4. Library Reference

Draft Documentation, Release 1.6.1

To preserve an EXR file’s tile or scanline settings:

imageInfo = Draft.ImageInfo()
image = Draft.Image.ReadFromFile('//path/to/in.exr', imageInfo=imageInfo)
image.ApplyGamma(1.8)
image.WriteToFile('//path/to/out.exr', imageInfo=imageInfo)

To write a DWAA compressed EXR file with quality set to 75:

imageInfo = Draft.ImageInfo()
imageInfo.compression = 'dwaa'
imageInfo.quality = 75

image = Draft.Image.ReadFromFile('//path/to/in.exr')
image.WriteToFile('//path/to/out.exr', imageInfo=imageInfo)

To embed a timecode in an image:

timecode = Draft.Timecode("09:10:11:12")
imageInfo = Draft.ImageInfo()
imageInfo.timecode = timecode

image = Draft.Image.ReadFromFile('//path/to/in.exr')
image.WriteToFile('//path/to/out.exr', imageInfo=imageInfo)

4.8 LibraryInfo

class Draft.LibraryInfo((object)arg1)→ None
These functions provide information about the Draft library itself.

static About()→ str :
Returns a string containing information about Draft, and its contributors.

Usage:

print Draft.LibraryInfo.About()

static Description()→ str :
Returns a string containing a brief description of Draft.

Usage:

print Draft.LibraryInfo.Description()

static Revision()→ str :
Returns a string containing the revision of the Draft library being used.

Usage:

print Draft.LibraryInfo.Revision()

static Version()→ str :
Returns a string containing the version of the Draft library being used.

Usage:

print Draft.LibraryInfo.Version()

4.8. LibraryInfo 23

Draft Documentation, Release 1.6.1

4.9 LUT

class Draft.LUT
The Draft.LUT class contains Draft’s methods for working with Color Look-Up Tables (LUT). It contains two
types of functions: Static functions, and Member functions. Static functions can be invoked without an instance
(by calling Draft.LUT.<function name>), whereas Member functions must be invoked from an instance of a
Draft.LUT object (by calling <someLUT>.<function name>).

The Static functions are used to create new instances of the Draft.LUT class, whereas the Member functions are
used to work with existing instances of the Draft.LUT. The sample code snippets should clarify this distinction
function in case you are unsure.

Raises an exception This class cannot be instantiated from Python

Apply((LUT)arg1, (Image)image)→ None :
Transform a Draft.Image‘s color using this LUT.

Arguments:

image The image to transform. The image will be transformed in-place.

Usage:

image = Draft.Image.ReadFromFile('//path/to/some/image/file.png')
lut = Draft.LUT.CreateSRGB()
lut.Apply(image)

static ClearOCIOCaches()→ None :
Flush OCIO’s cached contents of LUTs on disk, intermediate results, etc.

New in version 1.2.

Arguments: (none)

Usage:

Draft.LUT.ClearOCIOCaches()

Note: Calling this is normally not necessary.

static CreateASCCDL((object)slope, (object)offset, (object)power[, (float)saturation=1])→ LUT :
Return a new linear-to-ASC-CDL LUT.

New in version 1.2.

Arguments:

slope Three float values greater than or equal to 0 indicating the slope correction for the R, G, B channels.
For example: [1.2, 0, 3.4].

offset Three float values indicating the offset correction for the R, G, B channels. For example: [-0.6,
0.2, 0].

power Three float values strictly greater than 0 indicating the power correction for the R, G, B channels.
For example: [1.1, 2, 3].

saturation Optional. A float value greater than or equal to 0 indicating the saturation to apply. Defaults
to 1.

Usage:

24 Chapter 4. Library Reference

Draft Documentation, Release 1.6.1

lut = Draft.LUT.CreateASCCDL([1, 0, 3.4], [-0.6, 0.2, 0], [1.1, 2, 3], 1)

Note: Draft does not compute the inverse of an ASC CDL LUT, and so calling Inverse() on one will throw
a runtime error.

static CreateAlexaV3LogC()→ LUT :
Return a new linear-to-ALEXA V3 Log C LUT.

Arguments: (none)

Usage:

alexaLut = Draft.LUT.CreateAlexaV3LogC()

static CreateCineon([(float)blackLevel=95[, (float)whiteLevel=685]])→ LUT :
Return a new linear-to-Cineon LUT.

Arguments:

blackLevel Optional. An integer in the range [0..1023] indicating the black level. (Default is 95.)

whiteLevel Optional. An integer in the range [0..1023] indicating the white level. (Default is 685.)

Usage:

cineonLut = Draft.LUT.CreateCineon()

static CreateGamma((float)gamma)→ LUT :
Return a new linear-to-Gamma LUT.

Arguments:

gamma A float value indicating the gamma to apply.

Usage:

gammaLut = Draft.LUT.CreateGamma(2.2)

static CreateOCIOProcessor((str)colorSpaceIn, (str)colorSpaceOut)→ LUT :
Return a new OCIO LUT for converting images from colorSpaceIn to colorSpaceOut. (Note: Can also use
role alias names from config.ocio.)

New in version 1.2.

Arguments:

colorSpaceIn the colorspace the input images will be in.

colorSpaceOut the desired colorspace for the processed images.

Usage:

ocioLUT = Draft.LUT.CreateOCIOProcessor('linear', 'Cineon')

static CreateOCIOProcessorFromFile((str)filename)→ LUT :
Return a new OCIO LUT based on the specified file.

New in version 1.2.

Arguments:

filename name of the LUT file (including the path, either absolute, or relative to the search paths in
config.ocio).

4.9. LUT 25

Draft Documentation, Release 1.6.1

Usage:

lut = Draft.LUT.CreateOCIOProcessorFromFile('//path/to/LUTfile.ext')

Note: For a list of supported LUT file types, see: http://opencolorio.org/FAQ.html#what-lut-formats-are-
supported.

static CreateRec709()→ LUT :
Return a new linear-to-Rec. 709 LUT.

Arguments: (none)

Usage:

rec709Lut = Draft.LUT.CreateRec709()

static CreateSRGB()→ LUT :
Return a new linear-to-sRGB LUT.

Arguments: (none)

Usage:

srgbLut = Draft.LUT.CreateSRGB()

Inverse((LUT)arg1)→ LUT :
Return a new LUT that performs the inverse operation of this LUT.

Arguments: (none)

Usage:

cineonLut = Draft.LUT.CreateCineon()
inverseCineonLut = cineonLut.Inverse()

static SetOCIOConfig([(unicode)path=’‘])→ None :
Initialize OCIO to use the config.ocio file specified by path. If no path is supplied, Draft checks the OCIO
environment variable, then configurations distributed with Draft, and finally searches PATH for a directory
containing a config.ocio file.

New in version 1.2.

Arguments:

path path/to/config.ocio (optional)

Usage:

Draft.LUT.SetOCIOConfig('//path/to/some/config.ocio')

4.10 Timecode

class Draft.Timecode((object)arg1, (str)timecodeString)→ None :
Create a Timecode object to store a timecode as described in SMPTE standard.

Constructor Arguments:

timecode A string value with format hh:mm:ss:ff for non-drop frame timecode and hh:mm:ss;ff for drop frame
timecode, where hh indicates the hours in the range [0..23], mm the minutes in the range [0..59], ss the
seconds in the range [0..59] and ff the frame in the range [0..59].

26 Chapter 4. Library Reference

http://opencolorio.org/FAQ.html#what-lut-formats-are-supported
http://opencolorio.org/FAQ.html#what-lut-formats-are-supported

Draft Documentation, Release 1.6.1

Usage:

timecode = Draft.Timecode("12:40:10:15")

New in version 1.5.

4.11 TileAssembler

class Draft.TileAssembler((object)arg1)→ None
The Draft.TileAssembler class provides the ability to assemble images or portions of images, called tiles, into
a single final image that will be written to a file on disk. Each tile is represented by a Draft.Image created
from a filename and corresponds to an image file on disk. The image files on disk associated with the tiles must
not be modified during the assembly process; doing so might lead to unexpected behavior.

New in version 1.3.

__init__((object)arg1) -> None

AddTile((TileAssembler)self, (Image)image, (int)left, (int)bottom)→ None :
Adds an image to be included in the assembled final image.

Arguments:

image A Draft.Image created from a filename.

left An integer number of pixels that denotes how far from the left the image should be offset.

bottom An integer number of pixels that denotes how far from the bottom the image should be offset.

Usage:

tileAssembler = Draft.TileAssembler()
imageFromFile = Draft.Image.ReadFromFile("//path/to/some/image.exr")
tileAssembler.AddTile(imageFromFile, 160, 120)

AssembleToFile((TileAssembler)self, (unicode)filename[, (ImageInfo)imageInfo=<Draft.ImageInfo
object at 0x00000000041A6B48>])→ None :

Assembles the images added with the function Draft.TileAssembler.AddTile() to one single
image which is written to a file on disk.

Arguments:

filename A string value indicating where to save the file to.

imageInfo Optional. A Draft.ImageInfo that determines saving properties. (Default is ‘None’.)

Usage:

tileAssembler = Draft.TileAssembler()
imageFromFile = Draft.Image.ReadFromFile("//path/to/some/image.exr")
tileAssembler.AddTile(imageFromFile, 160, 120)
tileAssembler.AssembleToFile("//path/to/final/image.exr")

SetChannels((TileAssembler)self, (object)channels)→ None :
Sets the channels of the final image.

Arguments:

channels A list of (string) channel names to be included in the final image.

Usage:

4.11. TileAssembler 27

Draft Documentation, Release 1.6.1

tileAssembler = Draft.TileAssembler()
tileAssembler.SetChannels(['R', 'G', 'B', 'A'])

SetSize((TileAssembler)self, (int)width, (int)height)→ None :
Sets the size of the final image.

Arguments:

width An integer value indicating the width of the final image.

height An integer value indicating the height of the final image.

Usage:

tileAssembler = Draft.TileAssembler()
tileAssembler.SetSize(640, 480)

4.12 Video

Draft.QTFastStart((unicode)inputFile, (unicode)outputFile)→ int :
Rearranges the atoms inside the input QT file to enable playback without first loading the entire file.

Arguments:

inputFile The filename of the input .mov file.

outputFile The filename of the output .mov file.

Usage:

Draft.QTFastStart("/path/to/input.mov", "/path/to/output.mov")

Draft.ConcatenateVideoFiles((list)inputFiles, (unicode)outputFile)→ None :
Concatenate a list of video files.

New in version 1.5.

Arguments:

inputFiles A list of string values indicating paths to the video files to concatenate.

outputFile A string value indicating the path to the concatenated video to create.

Usage:

Draft.ConcatenateVideoFiles(["/path/to/input1.mov", "/path/to/input2.mov"],
"/path/to/output.mov")

4.12.1 VideoEncoder

class Draft.VideoEncoder

object __init__(tuple args, dict kwds) : __init__((VideoEncoder) arg1, (str)filename [, (object)fps=24 [,
(int)width=640 [, (int)height=480 [, (int)kbitRate=None [, (str)codec=’MJPEG’ [, (str)audioFilename=”
[, (int)audioDelay=0]]]]]]]) -> None[, (TimeCode)timecode=None

Create a VideoEncoder.

Constructor Arguments:

filename A string value indicating where the video file should be saved.

28 Chapter 4. Library Reference

Draft Documentation, Release 1.6.1

fps Optional. An integer, float, or Fraction value indicating the framerate to use. (Default is 24.)

width Optional. An integer value indicating the width to use. (Default is 640.)

height Optional. An integer value indicating the height to use. (Default is 480.)

kbitRate Optional. An integer value indicating the kbit rate to use. (Default is None, which corresponds
to quality = 85.) Only one of kbitRate or quality can be specified.

codec A string value indicating the Codec to use. (Default is ‘MJPEG’.) Valid codec values are:
‘MPEG4’, ‘MJPEG’, ‘H264’, ‘DNXHD’, ‘RAWVIDEO’, and ‘VP8’.

audioFilename A string value indicating the name of an audio file, or a video file with an audio track, to
include in the video. This can be an empty string for no audio file. (Default is ‘’.)

audioDelay Optional. An integer value indicating the delay to apply to the audio file, measured in frames.
(Default is 0.)

timecode Optional. A Draft.Timecode object used to set the timecode that will be embedded in the
video. (Default is None.)

Named arguments:

quality An integer in the range [0..100] indicating the video encoding quality to use. Greater values
correspond to higher quality. Only one of quality or kbitRate can be specified.

Usage:

enc = Draft.VideoEncoder("//path/to/video/save.mov")

or, to specify the frame rate and frame size:

enc = Draft.VideoEncoder("//path/to/video/save.mov", 24, 800, 600)

or, to include an audio file:

enc = Draft.VideoEncoder("//path/to/video/save.mov",
audioFilename='//path/to/audio/load.wav')

or, to use a specific quality and codec:

enc = Draft.VideoEncoder("//path/to/video/save.mov", quality=80, codec='H264')

or, to use a Fraction FPS:

from fractions import Fraction
fps = Fraction(30000, 1001)
enc = Draft.VideoEncoder("//path/to/video.mov", fps, 800, 600, 5120, "MJPEG")

EncodeNextFrame((VideoEncoder)arg1, (Image)image)→ None :
EncodeNextFrame(image)

Encodes a given Draft.Image as the next frame in the video.

Arguments:

image The image to encode into the next frame of the video.

Usage:

defaultEncoder = Draft.VideoEncoder("//path/to/video/save.mov")
defaultEncoder.EncodeNextFrame(Draft.Image.CreateImage(800, 600))

4.12. Video 29

Draft Documentation, Release 1.6.1

FinalizeEncoding((VideoEncoder)arg1)→ None :
Finalizes the encoding process, completing the video.Arguments: (none)

Usage:

enc = Draft.VideoEncoder("//path/to/video.mov")
encode some frames here...
enc.FinalizeEncoding()

4.12.2 VideoDecoder

class Draft.VideoDecoder((object)arg1, (unicode)filename)→ None :
Create a VideoDecoder to decode the specified file.

Constructor Arguments:

filename A string value indicating the path of the video to decode.

Usage:

decoder = Draft.VideoEncoder("//path/to/video/load.mov")

DecodeFrame((VideoDecoder)arg1, (long)frameNumber, (Image)image)→ bool :
Decodes a specified frame from the video and returns it by reference through the image argument. This
function returns a boolean to indicate whether or not the decode succeeded.

Arguments:

frameNumber An integer indicating which frame should be decoded.

image A Draft.Image object used to return the decoded frame.

Usage:

decoder = Draft.VideoDecoder("//path/to/video/file.mov")
frameImage = Draft.Image.CreateImage(800, 600)
if decoder.DecodeFrame(100, frameImage):

process frameImage here...

DecodeNextFrame((VideoDecoder)arg1, (Image)image)→ bool :
Decodes a frame from the video and returns it by reference through the image argument. This function
returns a boolean to indicate whether or not the decode succeeded.

Arguments:

image A Draft.Image object used to return the decoded frame.

Usage:

decoder = Draft.VideoDecoder("//path/to/video/file.mov")
frameImage = Draft.Image.CreateImage(800, 600)
while(decoder.DecodeNextFrame(frameImage)):

process the decoded frames here...

fps
The average frame rate of the video.

height
The height of a video frame.

timecode
The timecode embedded in the video.

30 Chapter 4. Library Reference

Draft Documentation, Release 1.6.1

width
The width of a video frame.

4.12. Video 31

Draft Documentation, Release 1.6.1

32 Chapter 4. Library Reference

CHAPTER

FIVE

COOKBOOK

5.1 Introduction

We have compiled a series of commonly used code recipes in Draft into this cookbook. First off, if you aren’t familiar,
a code recipe is a snippet of code that captures a common case. The goal is so that you don’t have to remember exactly
how to do something, like how to setup a certain type of video encoder, and instead have a place to quickly refer to
when you need to cook something up!

You can use this cookbook both as way to learn new techniques and functions in Draft, as well as a handy reference
whenever you need it. While reading it from start to finish would be helpful, the intention is that you use it by jumping
around the table of contents based on what you are interested in.

We will be adding new recipes in the future and if you would like to suggest new additions. please post on our forums.

These recipies make the assumption that you are familiar with the Python programming language, so we won’t be
taking too many pains to explain the syntatic details of the recipes. The discussions will focus primarily on what Draft
is doing and what other options might be available to you.

5.1.1 Conventions Used

Here are the conventions we use throughout this cookbook.

Each recipe is in response to a given Problem. This can be something fairly simple like Creating an Image to
something much more complex like Compositing images using Anchors.

The Solution is the code snippet that solves the stated problem. The recipe will be formatted with Python highlights
to make it easier to look at. Copy the recipe code into your own scripts to use it.

Finally, each recipe is accompanied by a Discussion of the solution. The discussion is not required reading, but often
includes further details and offers helpful hints when needing to solve more complex problems. Where appropriate,
sometimes a See Also section is included to link to other relevant recipes or documentation.

When we refer to code within the discussion text, quoted code is formatted like this to help make it
stand out. When we include code lines, they will appear on their own line and be in a different font.

For example, the Draft library is imported into a Python script in the standard manner:

import Draft

The module Draft contains several important objects such as Draft.Image.

33

Draft Documentation, Release 1.6.1

5.2 Basic Operations

The basic operations cover the basics of Draft and what you will see in most Draft scripts. Things like creating an
image and doing some simple text annotations are covered here, as well as how to setup a video encoder to create a
video file.

5.2.1 Creating an Image

Problem

You want to create a new blank image with a width of 640 pixels and a height of 480 pixels.

Solution

import Draft

img = Draft.Image.CreateImage(640, 480)

save the image for later use
img.WriteToFile('blank image.jpg')

Discussion

The first line (import Draft) imports the functionality of Draft. The second line asks Draft to create an image with
the given width (640 pixels) and height (480 pixels), and saves it in the variable which we have chosen to call img.
Note that we can also save the width and height values in variables, and then pass the variables to CreateImage():

newWidth = 1024
newHeight = 768

newImage = Draft.Image.CreateImage(newWidth, newHeight)

If, instead of starting with a blank image, you want to start with an image you have saved, you can use Draft’s
ReadFromFile() method instead of CreateImage(). Instead of specifying a width and height, we now specify
the filename. If the image file is not in the current directory, we must include the path to the image as part of the
filename. For example:

myImg = Draft.Image.ReadFromFile(r'X:\project\shot\Patches with ball.jpg')

Note that we have used quotes around the filename. Quotation marks are used to indicate the start and end of non-
numeric data literals, called strings (short for “string of characters”). We can use either single quotes (‘) or double
quotes (”), as long as the quotes at the beginning and end match. We have also used the letter r before the first quote
to indicate that the backslashes and characters following the backslashes are to be treated as separate characters, not
as an escape sequence. (Escape sequences are used to include special characters in strings.)

The final line of the solution saves our image to a file, in this case, ‘blank image.jpg’ in the current working directory.
(Again, if you wish the image to be saved elsewhere, you must specify the path as part of the directory.) Draft
automatically detects the format for the image from the filename extension.

34 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

5.2.2 Crop an Image

Problem

You wish to crop an image, ‘Patches with ball.jpg’, coming in 100 pixels on the left, 80 on the bottom, 200 on the
right, and 150 on the top.

Solution

import Draft

img = Draft.Image.ReadFromFile('Patches with ball.jpg')
img.Crop(100, 80, img.width - 200, img.height - 150)
img.WriteToFile('Patches with ball (cropped).jpg')

Discussion

Here we’ve decided that we want to remove parts of the image to improve the composition of the remaining image.
The parameters to Crop() specify the left edge, bottom edge, right edge, and top edge, each measured in pixels from
either the left or bottom edges of the uncropped image. In this example, we’re removing 100 pixels from the left edge,
80 pixels from the bottom edge, 200 pixels from the right edge, and 150 pixels from the top edge.

Suppose you know how much you want to crop in inches (or cm), rather than how many pixels. You can convert this
number from inches to pixels by using the image resolution. If we wanted to crop, say 0.75 inches off of each edge of
an image whose resolution is 300 pixels per inch, then we can compute the number of pixels to crop by multiplying
0.75 inches by 300 ppi to get 225 pixels:

inches = 0.75
ppi = 300
cropAmt = inches * ppi

img.Crop(cropAmt, cropAmt, img.width - cropAmt, img.height - cropAmt)

See Also

For more information on the import statement, ReadFromFile(), and WriteToFile(), see the Creating an
Image section of this Cookbook.

5.2.3 Composite Two Images

Problem

You have two images, Patches.exr and Ball.exr, and you wish to composite Ball.exr over Patches.exr, so that the ball
appears in the bottom right corner of the image.

Solution

import Draft

img = Draft.Image.ReadFromFile('Patches.exr')
ballImg = Draft.Image.ReadFromFile('Ball.exr')

5.2. Basic Operations 35

Draft Documentation, Release 1.6.1

anchor = Draft.Anchor.SouthEast
compOp = Draft.CompositeOperator.OverCompositeOp
img.CompositeWithAnchor(ballImg, anchor, compOp)

img.WriteToFile('Patches with ball.exr')

Discussion

We have three choices of composite methods, which differ in how we control the positioning of the top image:
Composite(), CompositeWithAnchor(), and CompositeWithPositionAndAnchor().

The first method, Composite(), takes four parameters: the second image that will be composited with the current
image, two floating point values that specify the horizontal and vertical offset of the second image relative to the
first image, and the composite operator, which specifies how the pixels of the two images will be combined. The
coordinates of the bottom left corner of the second image are given as a fraction of the width and height of the current
image, and specify the distance from the bottom left corner of the current image. For example, if we wanted the second
image’s bottom left corner to be positioned at 10% of the height of the first image, and 30% of the width, we would
use:

xPos = 0.3
yPos = 0.1
img.Composite(ballImg, xPos, yPos, Draft.CompositeOperator.OverCompositeOp)

The second method, CompositeWithAnchor(), is the method we have chosen to use in our example.
CompositeWithAnchor() takes three parameters; the first and last parameters (image and operation) are
the same as Composite(), but now the second parameter, which specifies how to position the second im-
age, is a named anchor constant. This named anchor constant specifies which coordinates of the two images are
aligned. For example, Draft.Anchor.North specifies that the top centre of both images are aligned, whereas
Draft.Anchor.SouthEast specifies that the bottom right corners of the images are aligned. The named Anchor
coordinates correspond to the eight cardinal and intercardinal directions (NorthWest, North, NorthEast, East,
SouthEast, South, SouthWest, West), plus Center.

The third method, CompositeWithPositionAndAnchor(), uses both position and anchor parameters, as its
name implies. The position specifies a location on the current image, again as coordinates from the bottom left corner
measured as a percentage of width and height. The anchor specifies which location on the second image will be
aligned with the position on the first image. For example, if we want the centre of the second image to be located at
the horizontal centre of the first image, 25% up from the bottom, we would use:

xPos = 0.5
yPos = 0.25
anchor = Draft.Anchor.Center
compOp = Draft.CompositeOperator.OverCompositeOp
img.CompositeWithPositionAndAnchor(ballImg, xPos, yPos, anchor, compOp)

Once we have chosen our method of positioning, there are many choices for how we combine the pixels of one image
with the pixels of another. The most common composite operation is the “over” operation, which we select by using the
over operator constant, Draft.CompositeOperator.OverCompositeOp. With the over operation, opaque
pixels from ballImg will replace the corresponding pixels in img, and transparent pixels will leave the underlying
pixels in img unchanged. For semi-transparent pixels in ballImg, we get a blend of the foreground and background
that depends on the alpha value of the ballImg pixel.

Note that Draft assumes all images are not premultiplied; in other words, the color channels have not been multiplied
by the alpha channel. Draft does any premultiplication necessary for the composite operation, and also returns an
image that is unpremultiplied. If your images are already premultiplied, you can use img.Unpremultiply() to
unpremultiply the image.

36 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

See Also

For more information on the import statement, ReadFromFile(), and WriteToFile(), see the Creating an
Image section of this Cookbook.

For more information on the various composite operators, see the Library Reference.

5.2.4 Convert an Image From One Format To Another

Problem

You have an image, “Patches with ball.jpg”, stored as a jpeg, but wish to have it in exr format.

Solution

import Draft

img = Draft.Image.ReadFromFile('Patches with ball.jpg')
img.WriteToFile('Patches with ball.exr')

Discussion

Converting an image from one format to another is as simple as reading in the image and saving it in a new file with the
appropriate file extension. Draft automatically converts the image based on the file extension specified. Draft supports
the following image extensions: .jpg (or .jpeg), .png, .tif (or .tiff), .exr, .dpx, .gif, .bmp, .hdr, .tga.

See Also

For more information on the import statement, ReadFromFile(), and WriteToFile(), see the Creating an
Image section of this Cookbook.

5.2.5 Create Text Annotation

Problem

You wish to add some text, “My ball!!!”, to your image, ‘Patches with ball.jpg’.

Solution

import Draft

img = Draft.Image.ReadFromFile('Patches with ball.jpg')

textInfo = Draft.AnnotationInfo()
textImage = Draft.Image.CreateAnnotation("My ball!!!", textInfo)

anchor = Draft.Anchor.South
compOp = Draft.CompositeOperator.OverCompositeOp
img.CompositeWithPositionAndAnchor(textImage, 0.5, 0.1, anchor, compOp)

5.2. Basic Operations 37

Draft Documentation, Release 1.6.1

img.WriteToFile('Patches with ball (annotated).jpg')

Discussion

There are three steps to adding text in this solution: getting the annotation information, creating an image that contains
the text, and adding the text image to the photo.

The annotation information stores the properties, such as font, point size, colour, and more. If we use the
AnnotationInfo object as is, the text image will use the default values:

PointSize: 32

FontType: SourceSansPro-Regular

Padding: 0.0

Color: white

BackgroundColor: transparent

DrawShadow: false

ShadowColor: black

However, we can also customize any of the above settings.

PointSize:

The point size is measured in pixels. If your image resolution is 72 ppi, the default point size will give you text that
is nearly half an inch tall. However, if your image resolution is, say, 300 ppi, the text will only be a tenth of an inch
tall. To make sure the text is the height you want it, be sure to set the point size after creating the annotation info, but
before using it to create the text image:

text_height_inches = 0.5
ppi = 300
textInfo.PointSize = int(text_height_inches * ppi)

Since PointSize expects an integer, we need to use the int() function to convert text_height_inches *
ppi from floating point to an integer.

FontType:

The font type specifies both which font, and which style (bold, italic, etc) to use for the text. The default font is set to
Adobe’s Source Sans Pro (regular) font. However, you can use any font contained in your type.xml file, or any font
not in type.xml as long as you specify the full path to the font file:

textInfo.FontType = 'Times-New-Roman-Bold' # Using the name field value from type.xml

or:

textInfo.FontType = r'C:\Windows\Fonts\timesbi.ttf' # Specifying location of glyphs

Troubleshooting: If you get an error message when trying to use the default font, make sure the MAG-
ICK_FONT_PATH environment variable is set to the Draft subdirectory containing SourceSansPro-Regular.otf.

38 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

Padding:

Padding specifies how much empty space to leave around the text in the image that is created using
CreateAnnotation(). The padding is multiplied by the point size to get the measurement in pixels, so a padding
of 1.0 with the default point size gives 32 pixels of space around the text.

Color:

The colors of the text (Color), background (BackgroundColor), and shadow (ShadowColor) can be changed
by creating a new Draft.ColorRGBA object and performing the appropriate assignment. For example, to make the
text dark red:

textInfo.Color = Draft.ColorRGBA(0.5, 0.0, 0.0, 1.0)

The four parameters to Draft.ColorRGBA are the values to use for red, green, blue, and alpha, in that order. Values
for these channels are normally in the range 0.0 to 1.0.

DrawShadow:

A shadow will be drawn for the text if DrawShadow is set to true:

textInfo.DrawShadow = True

Adding some of our customizations to the simple solution, we get:

import Draft

img = Draft.Image.ReadFromFile('Patches with ball.jpg')

textInfo = Draft.AnnotationInfo()
text_height_inches = 0.5
ppi = 300
textInfo.PointSize = int(text_height_inches * ppi)
textInfo.FontType = 'Times-New-Roman-Bold-Italic' # Using 'name' from type.xml
textInfo.Color = Draft.ColorRGBA(0.5, 0.0, 0.0, 1.0)
textInfo.DrawShadow = True

textImage = Draft.Image.CreateAnnotation("My ball!!!", textInfo)
anchor = Draft.Anchor.South
compOp = Draft.CompositeOperator.OverCompositeOp
img.CompositeWithPositionAndAnchor(textImage, 0.5, 0.1, anchor, compOp)

img.WriteToFile('Patches with ball (annotated).jpg')

After the annotation information is set how we want it, we can use it in the call to CreateAnnotation() to create
an image containing the text we want, in this case, “My ball!!!”. CreateAnnotation() saves the annotation as
an image, which we can then composite over our photo using one of the three composite methods: Composite(),
CompositeWithAnchor(), and CompositeWithPositionAndAnchor(). In this case, we have chosen to
use CompositeWithPositionAndAnchor().

After the call to CreateAnnotation(), we have our photo in the variable img, and the text in the variable textImg.
CompositeWithPositionAndAnchor() is an instance method, meaning that we call it on an Image instance,
in this case, img. The photo in img will be modified, which is why we do not need to assign a return value to another
variable. The second image, textImg, is passed as an argument to the method. The remaining arguments specify
how we wish the second image to be composited with the first: 0.5 and 0.1 specify that we want the anchor point to
be located half way across img, and 10% up from the bottom; Draft.Anchor.South indicates that the anchor

5.2. Basic Operations 39

Draft Documentation, Release 1.6.1

point corresponds to the bottom center of textImg, and Draft.CompositeOperator.OverCompositeOp
indicates to place textImg over img. Since the background of textImg is transparent by default, we will be able
to see our photograph wherever there is neither text nor shadow.

See Also

For more information on the other two composite methods and the various composite operations, see the section
Composite Two Images.

For more information on the import statement, ReadFromFile(), and WriteToFile(), see the Creating an
Image section of this Cookbook.

5.2.6 Resize an Image

Problem

You want to resize ‘Patches with ball.jpg’ to 640x480.

Solution

import Draft

img = Draft.Image.ReadFromFile('Patches with ball.jpg')
img.Resize(640, 480)
img.WriteToFile('Patches with ball 640x480.jpg')

Discussion

In addition to the width and height, Resize has two optional parameters, type and border. Type specifies how the
image should be scaled to fit the new size.The default value is ’fit’, which scales the image as large as possible,
keeping the aspect ratio locked, while staying inside the bounds of the new image size. If the aspect ratio of the new
size does not match the aspect ratio of the old size, the unfilled portion of the resized image will be evenly distributed
on both sides of the image, either top and bottom, or left and right. Most options for type preserve the aspect ratio of the
original image. These aspect-ratio-preserving types include: ’none’ (don’t scale the image at all), ’width’ (scale
the image to fit the new width), ’height’ (scale the image to fit the new height), ’fit’ (already described), and
’fill’ (scale the image as small as possible while covering the new image size). One option does not preserve the
aspect ratio: ’distort’ (scale the image to match the new width and height, changing the aspect ratio as necessary).

We can use the type parameter to letterbox or pillarbox the original image inside the new dimensions. To letterbox a
shorter image within an image with a taller aspect ratio, choose type=’width’:

img.Resize(640, 480, type='width')

To pillarbox a narrower image within an image with a wider aspect ratio, choose type=’height’:

img.Resize(1280, 720, type='height')

Except for ’distort’ and ’fill’, the type options could leave portions of the new image with no data. We
specify how these areas are to be filled using the optional border parameter. There are two border options,
’transparent’ (default), and ’stretch’. Choosing (or defaulting to) ’transparent’ sets the border pixels
to black with an alpha of zero, while ‘stretch’ copies the pixels at the edges of the original image, and uses those values
to fill the border. For example, to resize the image to 1024x768 with no scaling, and a stretched border, use:

40 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

img.Resize(1024, 768, type='none', border='stretch')

See Also

For more information on the import statement, ReadFromFile(), and WriteToFile(), see the Creating an
Image section of this Cookbook

5.2.7 Create a QuickTime Movie

Problem

You have 200 frames of Patches playing with his ball, and you wish to combine them into a QuickTime movie. The
individual frames are named using the format Patches_ball_###.jpg, where ### is a three digit frame number in the
range 001 to 200.

Solution

import Draft
from DraftParamParser import ReplaceFilenameHashesWithNumber

encoder = Draft.VideoEncoder('Patches.mov') # Initialize the video encoder.

for currFrame in range(1, 201):
currFile = ReplaceFilenameHashesWithNumber('Patches_ball_###.jpg', currFrame)
frame = Draft.Image.ReadFromFile(currFile)
encoder.EncodeNextFrame(frame) # Add each frame to the video.

encoder.FinalizeEncoding() # Finalize and save the resulting video.

Discussion

In order to create a QuickTime movie, we need a video encoder. The line:

encoder = Draft.VideoEncoder('Patches.mov')

creates a video encoder using default values for most parameters, and ‘Patches.mov’ specifies what filename the movie
will be saved to. The optional parameters include, among others, fps, codec, and quality. The frames per second, fps,
defaults to 24, the codec defaults to ‘MJPEG’, and the quality defaults to 85. If you wish to use values other than the
defaults, simply use in the parameters. For example, we can increase the frame rate to 30, and decrease the quality to
70, using:

encoder = Draft.VideoEncoder('Patches.mov', fps=30, quality=70)

The fps frame rate can be specified as an integer, floating point number, or Fraction. quality can be set to any
integer in the range of 0 to 100, where higher numbers represent higher quality. (Note that you cannot simultaneously
set both quality and kbitRate, another optional parameter.) In addition to ‘MJPEG’, valid codec values include
‘MPEG4’, ‘H264’, ‘RAWVIDEO’.

Once the encoder is initialized, we can add our frames. Since there are many frames, we use a loop plus some
logic to read in all of the frames one at a time. The function ReplaceFilenameHashesWithNumber() from
the DraftParamParser library takes a filename pattern and replaces hash symbols with the frame number, padded
with zeros to the appropriate number of digits indicated by the number of hash symbols. If no hash symbols are present,

5.2. Basic Operations 41

Draft Documentation, Release 1.6.1

ReplaceFilenameHashesWithNumber() will insert the frame number before the file extension (including
period). We then use the constructed file name to read in the frame, and add it to the video using:

encoder.EncodeNextFrame(frame)

You may wonder why we used range(1, 201) in our for loop over the frames. This is because the second
parameter to range specifies one past the end, not the actual last number. Since we want to include frame 200, we have
to specify that 201 is where the range stops.

Once we have added all of our frames, we finalize the encoding, which finishes any remaining processing and saves
the video to the file we specified previously. No parameters are required for the finalization:

encoder.FinalizeEncoding()

See Also

For more information on the import statement, ReadFromFile(), and WriteToFile(), see the Creating an
Image section of this Cookbook

For more information on additional optional parameters for the video encoder, see Draft.VideoEncoder.

More information on Fraction is available in the Python Documentation.

5.2.8 Write an Image to File with a Specific File Channel Map

Problem

You want to write an image to file with a specific file channel map.

Solution

import Draft

Read an image from file
image = Draft.Image.ReadFromFile('//path/to/in.exr')

Create and set the file channel map
fileChannelMap = { 'R':'16f', 'G':'16f', 'B':'16f', 'A':'16f' }
image.SetFileChannelMap(fileChannelMap)

Write the image back to file
image.WriteToFile('//path/to/out.exr')

Discussion

In order to specify the file channel map of an image you need to create a dictionary that represents a valid file channel
map. A valid file channel map will have one entry for each image’s channel and for those channels only. If you are
unsure about the channels currently present in the image, you can get the current channel names by using:

print image.GetChannelNames()

To specify the file channel data types, you can consult the table in the section Image File Channel Map for valid file
channel data types supported by Draft. Once you have loaded your image file and created a valid file channel map,
you can set the file channel map using the method SetFileChannelMap():

42 Chapter 5. Cookbook

http://docs.python.org/library/fractions.html

Draft Documentation, Release 1.6.1

image.SetFileChannelMap(fileChannelMap)

When the file is written to file, the file channel map is adjusted according to the valid channel data types for the
requested file format.

When you want to add another channel to your image in memory, you can use:

image.SetChannel('ID', 4)

By default, Draft will assign a file channel data type of ‘8’ to the new channel ‘ID’. If you want to set it to another
channel data type instead, you can modify the current file channel map using the method GetFileChannelMap()
and SetFileChannelMap() in the following way:

fileChannelMap = image.GetFileChannelMap()
fileChannelMap['ID'] = '32ui'
image.SetFileChannelMap(fileChannelMap)

See Also

For more information on the import statement, ReadFromFile() and WriteToFile(), see the Creating an
Image section of this Cookbook

You can also consult the sections Image File Channel Map in Concepts and Write an Image to File with a Maximum
Bit Depth in the Intermediate Cookbook.

5.2.9 Set Saving Settings in an Image File

Problem

You want to set the compression, the quality and the tileSize in an image file.

Solution

import Draft

Read an image from file
image = Draft.Image.ReadFromFile('//path/to/in.exr')

Create a Draft.ImageInfo object and set compression, quality and tileSize
imageInfo = Draft.ImageInfo()
imageInfo.compression = 'dwaa'
imageInfo.quality = 80
imageInfo.tileSize = (64, 64)

Write the image back to file
image.WriteToFile('//path/to/out.exr', imageInfo)

Discussion

In the above example, we decided to set the compression, the quality and the tileSize properties in an EXR image file.
The lines:

5.2. Basic Operations 43

Draft Documentation, Release 1.6.1

imageInfo = Draft.ImageInfo()
imageInfo.compression = 'dwaa'
imageInfo.quality = 80
imageInfo.tileSize = (64, 64)

creates a ImageInfo object and populates its fields with the desired valid values. For valid values, consult the section
ImageInfo in Concepts.

Once you have created a valid ImageInfo object, you add the imageInfo as an additional parameter when the file is
written to file:

image.WriteToFile('//path/to/out.exr', imageInfo)

Alternatively, you can retrieve the saving settings in an image file using:

imageInfo = Draft.ImageInfo()
image = Draft.Image.ReadFromFile('//path/to/in.exr', imageInfo)
compression = imageInfo.compression
quality = imageInfo.quality
tileSize = imageInfo.tileSize

See Also

For more information on the import statement, ReadFromFile() and WriteToFile(), see the Creating an
Image section of this Cookbook.

You can consult the section ImageInfo in Concepts.

5.2.10 Embed a Timecode in an Image File

Problem

You want to embed a timecode in an image file.

Solution

import Draft

Read an image from file
image = Draft.Image.ReadFromFile('//path/to/in.dpx')

Create a Draft.Timecode object
timecode = Draft.Timecode('12:40:10:15')

Create a Draft.ImageInfo object and set the timecode property
imageInfo = Draft.ImageInfo()
imageInfo.timecode = timecode

Write the image back to file
image.WriteToFile('//path/to/out.dpx', imageInfo)

44 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

Discussion

In the above example, we decided to embed a timecode in a DPX image file. Alternatively, it is possible to embed a
timecode in an EXR image file. Note that those two file formats are the only one for which embedding a timecode is
possible. The line:

timecode = Draft.Timecode('12:40:10:15')

creates a Timecode object representing a non-drop frame timecode. It is also possible to create a timecode repre-
senting a drop frame timecode using the following notation:

timecode = Draft.Timecode('12:40:10;15')

Once you have created a valid Timecode object, you need to create a ImageInfo object and set its timecode
property in the following way:

imageInfo = Draft.ImageInfo()
imageInfo.timecode = timecode

Finally, you add the imageInfo as an additional parameter when the file is written to file:

image.WriteToFile('//path/to/out.dpx', imageInfo)

Alternatively, you can retrieve a timecode previously embedded into an image file using:

imageInfo = Draft.ImageInfo()
image = Draft.Image.ReadFromFile('//path/to/in.exr', imageInfo)
timecode = imageInfo.timecode

See Also

For more information on the import statement, ReadFromFile() and WriteToFile(), see the Creating an
Image section of this Cookbook.

You can consult the sections Timecode in Concepts and Embed a Timecode in a Video File in the Intermediate Cook-
book.

5.2.11 Concatenate Video Files

Problem

You want to concatenate some of your video files to create one single video file.

Solution

import Draft

Define input and output files
inputVideoFile1 = '//path/to/movie_clip_1.mov'
inputVideoFile2 = '//path/to/movie_clip_2.mov'
inputVideoFile3 = '//path/to/movie_clip_3.mov'
outputVideoFile = '//path/to/complete_movie.mov'

Concatenate video files
Draft.ConcatenateVideoFiles([inputVideo1, inputVideo2, inputVideo3], outputVideo)

5.2. Basic Operations 45

Draft Documentation, Release 1.6.1

Discussion

In order to successfully concatenate video files, the input files must all share the same codec and all have the same file
extension than the output file. The line:

Draft.ConcatenateVideoFiles([inputVideoFile1, inputVideoFile2, inputVideoFile3], outputVideoFile)

concatenates the three input video clips and writes the result back in outputVideoFile, respecting the order in which
they appear in the list.

5.3 Intermediate Operations

These operations are more involved but are typical things done with Draft such as working with Stereo footage and
recipes for working with image sequences.

5.3.1 Create an Anaglyph Image

Problem

You want to create an anaglyph image from a left eye image and a right eye image.

Solution

Anaglyph images are easy to create in Draft.

import Draft
leftEyeImage = Draft.Image.ReadFromFile("left.jpg")
rightEyeImage = Draft.Image.ReadFromFile("right.jpg")
anaglyphImage = Draft.Image.Anaglyph(leftEyeImage, rightEyeImage, "LSA")

Discussion

Anaglyph images are composed of two images, the left eye image and the right eye image. The last setting is the
anaglyph type. In the above example we used LSA type anaglyph image but we also could have used PS type anaglyph
image.

See Also

Draft.Image.Anaglyph()

5.3.2 Create a Frame Counter

Problem

You want to overlay a frame counter on a video.

46 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

Solution

To create a frame counter for a video we need to create a text annotation of the frame number and composite the frame
number on the appropriate frame.

#Set up the decoder
decoder = Draft.VideoDecoder("path/to/clip.mov")
image = Draft.Image.CreateImage(1, 1)
frameNumber = 1
textInfo = Draft.AnnotationInfo()

#Set up encoder
encoder = Draft.VideoEncoder("path/to/save/video.mov")

while decoder.DecodeNextFrame(image):
frameText = Draft.Image.CreateAnnotation(str(frameNumber), textInfo)

#composite annotation onto frame
anchor = Draft.Anchor.SouthEast
compOp = Draft.CompositeOperator.OverCompositeOp
image.CompositeWithAnchor(frameText, anchor, compOp)

#encode the frame
encoder.EncodeNextFrame(image)
frameNumber += 1

encoder.FinalizeEncoding()

Discussion

Draft gives you a lot of freedom when creating a frame counter. Firstly, You can set frameNumber to start at any
number you want. For example, you can make the frame count from the start of the reel or some other number like a
timecode.

Also, you can set the frame number to be padded with zeros like this: 0012. Just change CreateAnnotation()
to:

CreateAnnotation("%04d" % frameNumber, textInfo)

The number after the zero is the total number of digits that will appear.

Secondly, the size, font and colour can be set to anything by changing textInfo (see the entry on Create Text
Annotation for more information).

Finally, you can change the position of your frame counter by changing the Anchor. In this example, the frame
counter will be put in the bottom right corner. By changing the Anchor you can make the frame counter appear
anywhere on the frame such as the top right corner with a NorthEast anchor.

5.3.3 Split a Movie into Single Frames

Problem

You have a movie of Patches playing with his ball, ‘Patches.mov’, and you want to extract the individual frames into
jpegs named Patches_###.jpg, where ### will be replaced by the corresponding three digit frame number.

5.3. Intermediate Operations 47

Draft Documentation, Release 1.6.1

Solution

import Draft
from DraftParamParser import ReplaceFilenameHashesWithNumber

frameNum = 1 # What number the first frame (jpeg) will have.
decoder = Draft.VideoDecoder('Patches.mov') # Initialize the video decoder.
frame = Draft.Image.CreateImage(1, 1) # Create an image object.

while decoder.DecodeNextFrame(frame) :
currFile = ReplaceFilenameHashesWithNumber('decode/Patches_###.jpg', frameNum)
frame.WriteToFile(currFile)
frameNum += 1

Discussion

To separate a video into single frames, we need a VideoDecoder and an Image object. We initialize the
VideoDecoder using the (path and) name of the movie we wish to decode, in this case, Patches.mov. The ini-
tial size of the Image is irrelevant, as the decoder will resize the image to fit the frame.

The call to DecodeNextFrame() attempts to save the next movie frame (if there is one) into the Image object,
frame, and returns a boolean (true/false) to indicate if it was successful. Because the frame variable gets modified
as a parameter, and a boolean is returned, we can use the call in our while loop to determine how long to loop: if
another frame is successfully decoded, we want to process it and continue. If a frame wasn’t successfully decoded,
either we’ve reached the end of the movie, or some other problem is preventing us from continuing. Either way, there’s
no frame to process, and the loop stops.

Inside the loop we know we have a frame to save. We use the output path and file-
name pattern, ‘decode/Patches_###.jpg’ and frame number to produce a unique file name using
ReplaceFilenameHashesWithNumber(), then write the frame to this file. Finally we increase the
frame number, so that the next frame will be written to a differently numbered file.

Once the script has finished, the individual frames will be stored in the decode subdirectory (note: this script as-
sumes the subdirectory named decode already exists), in separate files named Patches_001.jpg, Patches_002.jpg,
Patches_003.jpg, etc., for as many frames as we decoded from the movie.

5.3.4 Create a Left-Eye, Right-Eye, Side-By-Side Movie

Problem

You have a set of frames pairs (left eye, right eye) for creating a 3D movie of Patches playing with his ball, and you
want to use them to create a left-eye, right-eye, side-by-side movie, where each side is 640x480. The left eye images
are saved using the filenames Patches_ball_left_###.jpg, with ### replaced by the three digit frame number, and the
right eye images are similarly stored using the filenames Patches_ball_right_###.jpg.

Solution

import Draft
from DraftParamParser import ReplaceFilenameHashesWithNumber

width = 640
doubleWidth = width * 2 # twice the width to fit both left and right eye frames.
height = 480
encoder = Draft.VideoEncoder('Patches.mov', width=doubleWidth) # Create encoder.

48 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

for currFrame in range(1, 201): # Note: second parameter of range is one past end
nameL = ReplaceFilenameHashesWithNumber('Patches_ball_left_###.jpg', currFrame)
nameR = ReplaceFilenameHashesWithNumber('Patches_ball_right_###.jpg', currFrame)

frameL = Draft.Image.ReadFromFile(nameL)
frameR = Draft.Image.ReadFromFile(nameR)

frameL.Resize(width, height) # Make sure frames are correct size.
frameR.Resize(width, height)

frame = Draft.Image.CreateImage(doubleWidth, height) # Frame to hold both eyes.
compOp = Draft.CompositeOperator.OverCompositeOp
frame.CompositeWithAnchor(frameL, Draft.Anchor.West, compOp)
frame.CompositeWithAnchor(frameR, Draft.Anchor.East, compOp)

encoder.EncodeNextFrame(frame) # Add the frame to the video.

encoder.FinalizeEncoding() # Finalize and save the resulting video.

Discussion

The main difference between this recipe and the basic Create a QuickTime Movie recipe is that here we have two
images per frame of the movie, and we must load both and composite them into a single image before we can add
them to the video encoder.

Using Draft.Anchor.West and Draft.Anchor.East we can easily place the images without having to worry
about finding the exact location in the final image to use for the Composite() call. The left frame is placed at the
leftmost edge with the West anchor and the right frame is place at the rightmost edge using the East anchor.

See Also

Create a QuickTime Movie, Resize an Image, and Composite Two Images in the Basic Cookbook

5.3.5 Skipping Missing Frames

Problem

You have around 200 frames of Patches playing with his ball, and you wish to combine them into a QuickTime movie.
The individual frames are named using the format Patches_ball_###.jpg, where ### is a three digit frame number in
the range 001 to 200. Some of the frames are missing. You’d still like to create the movie, but you’d rather not have to
type in the entire list of frames that are there.

Solution

import Draft
from DraftParamParser import ReplaceFilenameHashesWithNumber

encoder = Draft.VideoEncoder('Patches.mov') # Initialize the video encoder.

Note that the second parameter of range is one past the last frame number
for currFrame in range(1, 201):

currFile = ReplaceFilenameHashesWithNumber('Patches_ball_###.jpg', currFrame)

5.3. Intermediate Operations 49

Draft Documentation, Release 1.6.1

try:
frame = Draft.Image.ReadFromFile(currFile) # Try to read the frame.

except:
pass # Reading was unsuccessful, skip frame.

else:
encoder.EncodeNextFrame(frame) # Add the frame to the video.

encoder.FinalizeEncoding() # Finalize and save the resulting video.

Discussion

If we try to read an image from a file that doesn’t exist, the ReadFromFile() method will throw an exception.
Since we want to continue even if some of the images are missing, we use the try/except construct: we try to load
in the image; if loading fails, we catch the exception (except) and don’t do anything (pass), otherwise (else), we
add the frame to the video.

An alternate method is to replace the try/except construct with an if statement and the exists() function in
the os.path module:

if os.path.exists(currFile):
frame = Draft.Image.ReadFromFile(currFile) # Read the frame.
encoder.EncodeNextFrame(frame) # Add the frame to the video.

See Also

Create a QuickTime Movie in the Basic Cookbook.

5.3.6 Create Proxies for an Image Sequence

Problem

You have around 200 frames of Patches playing with his ball, and you wish to combine them into a QuickTime movie.
The individual frames are named using the format Patches_ball_###.jpg, where ### is a three digit frame number in
the range 001 to 200. Some of the frames are missing. You’d still like to create the movie, but you’d like proxies to be
placed where the missing frames are.

Solution

import Draft
from DraftParamParser import ReplaceFilenameHashesWithNumber

proxy = Draft.Image.CreateImage(640, 480) # Create a proxy frame.
proxy.SetToColor(Draft.ColorRGBA(1, 0, 0, 1)) # Make the proxy noticeable.

encoder = Draft.VideoEncoder('Patches.mov') # Initialize the video encoder.

Note that the second parameter of range is one past the last frame number
for currFrame in range(1, 201) :

currFile = ReplaceFilenameHashesWithNumber('Patches_ball_###.jpg', currFrame)
try:

frame = Draft.Image.ReadFromFile(currFile) # Try to read the frame.
except:

50 Chapter 5. Cookbook

http://docs.python.org/library/os.path.html#os.path.exists
http://docs.python.org/library/os.path.html#module-os.path

Draft Documentation, Release 1.6.1

frame = proxy # Reading was unsuccessful, use proxy frame.
encoder.EncodeNextFrame(frame) # Add the frame to the video.

encoder.FinalizeEncoding() # Finalize and save the resulting video.

Discussion

If we try to read an image from a file that doesn’t exist, the ReadFromFile() method will throw an exception.
Since we want to continue even if some of the images are missing, we use the try/except construct: we try to load
in the image; if loading fails, we catch the exception (except) and use the proxy frame instead. In both cases we
have a frame to add to the video, and so this statement comes after the try/except block.

Since the proxy frame is the same for all missing frames, we can create it once, before the loop. In this example, we
have set the color of the proxy frame to red, so that it is easily located in the movie.

An alternate method is to replace the try/except construct with an if/else statement and the exists() function
in the os.path module:

if os.path.exists(currFile):
frame = Draft.Image.ReadFromFile(currFile) # Read the frame.

else:
frame = proxy # Reading was unsuccessful, use proxy frame.

See Also

Create a QuickTime Movie in the Basic Cookbook.

5.3.7 Saving Multiple Videos from the Same Input

Problem

You would like to create movies of Patches playing with his ball in multiple formats, from the same set of
Patches_ball_###.jpg input files, where ### represents a three digit frame number in the range 001 to 200. You
have decided that you want an MJPEG codec movie at 640x480 pixels, and a H264 codec movie at 1280x720 pixels.

Solution

import Draft
from DraftParamParser import ReplaceFilenameHashesWithNumber
from copy import deepcopy

encoderMJPEG = Draft.VideoEncoder('PatchesMJPEG.mov', codec='MJPEG',
width=640, height=480) # Initialize the MJPEG video encoder.

encoderH264 = Draft.VideoEncoder('PatchesH264.mov', codec='H264',
width=1280, height=720) # Initialize the H264 video encoder.

Note that the second parameter of range is one past the last frame number
for currFrame in range(1, 201):

currFile = ReplaceFilenameHashesWithNumber('Patches_ball_###.jpg', currFrame)
frame = Draft.Image.ReadFromFile(currFile) # Try to read the frame.

frameCopy = deepcopy(frame)
frameCopy.Resize(640, 480)

5.3. Intermediate Operations 51

http://docs.python.org/library/os.path.html#os.path.exists
http://docs.python.org/library/os.path.html#module-os.path

Draft Documentation, Release 1.6.1

encoderMJPEG.EncodeNextFrame(frameCopy) # Add the frame to the video.

frameCopy = deepcopy(frame)
frameCopy.Resize(1280, 720)
encoderH264.EncodeNextFrame(frameCopy) # Add the frame to the video.

encoderMJPEG.FinalizeEncoding() # Finalize and save the resulting video.
encoderH264.FinalizeEncoding() # Finalize and save the resulting video.

Discussion

We need a seperate encoder object for each movie we are creating. We can then add the resized frames to the matching
encoders. Be sure to remember to finalize each of the encoders.

To avoid a degredation in image quality from resizing multiple times, we work with a copy of the original image each
time we want the frame in a new size. Since assigning an image to a new variable (img2 = img1) does not actually
duplicate the internal data, we need to use the deepcopy() method from the copy module. Since we don’t need
the original frame any more after adding the frame to the last (in this case second) of the encoders, we could skip the
final deep copy, and simply resize and encode the original frame.

See Also

Create a QuickTime Movie and Resize an Image in the Basic Cookbook.

5.3.8 Change the Encoding of a Movie Clip

Problem

You want to change the encoding of a movie clip.

Solution

Use the VideoDecoder to decode your existing clip and then use the VideoEncoder to encode that clip into a
different codec. For example, the following code converts an input QuickTime to h.264.

image = Draft.Image.CreateImage(1, 1)

decoder = Draft.VideoDecoder("//path/to/existing/clip.mov")

hasFrames = decoder.DecodeNextFrame(image)
if hasFrames:

encoder = Draft.VideoEncoder("//path/to/video/save.mov", codec='H264')

while hasFrames:
encoder.EncodeNextFrame(image)
hasFrames = decoder.DecodeNextFrame(image)

encoder.FinalizeEncoding()

52 Chapter 5. Cookbook

http://docs.python.org/library/copy.html#copy.deepcopy
http://docs.python.org/library/copy.html#module-copy

Draft Documentation, Release 1.6.1

Discussion

Taking a movie clip and encoding it with a new codec is just a matter of decoding the existing clip and encoding it into
a new clip. An important thing to remember is that the paths for the decoder and the encoder must be different. You
can’t decode and encode the same file at the same time.

Draft will detect which decoder to use automatically so you do not need to specify it when you are decoding.

Draft supports multiple codec options. You can consult the sections Video in Concepts for a complete list.

5.3.9 Setting the Compression Quality when Encoding a Movie Clip

Problem

You want to set the compression quality when encoding a movie clip.

Solution

There are two ways of setting the compression quality when encoding a movie. The first way is to specify the bit rate
of the encoder. The bit rate is typically measure in kilobits so the parameter to set is kbitRate:

encoder = Draft.VideoEncoder('//path/to/video/save.mov', kbitRate = 85)

The other way to set the compression quality is with the quality keyword:

encoder = Draft.VideoEncoder('//path/to/video/save.mov', quality = 80)

Discussion

The compression quality parameter is an integer value between 0 and 100. Greater values correspond to higher
quality. When using a specified quality Draft will vary the bitrate to maintain the desired quality. This works in most
instances.

Specifying the bitrate provides a lot of control, but is only recommended if you the specific bitrate your movie needs
to be. kbitRate is more dependent on the codec than quality. For example, Avid DNxHD® accepts only certain
kbitRate values. On the other hand H.264 accepts almost any value for kbitRate but issues arise with very low and
very high values. If you don’t need to use a specific bitrate then use the quality keyword and let Draft do the work
for you.

These two settings are exclusive and only one of quality or kbitRate can be specified.

See Also

Draft.VideoEncoder

5.3.10 Add a Slate Frame to a Movie Clip

Problem

You want to add a slate frame to a movie clip.

5.3. Intermediate Operations 53

Draft Documentation, Release 1.6.1

Solution

The first step is to either load a standard slate frame or create a new image to insert in front of the existing frames. You
can even add text to this image to incorporate meta-data like shot information or project information.

slate = Draft.Image.CreateImage(outWidth, outHeight)
slate.SetToColor(Draft.ColorRGBA(0.0, 0.0, 0.0, 1.0))

#sets up the text on the slate frame
slateText = [("SHOW", jobParams.get('ExtraInfo1', '')), #skipped if no ExtraInfo1

("EPISODE", params.get('episode', '')), #skipped if 'episode' not in extra args
("SHOT", params['entity']),
("FRAMES", params['frameList']),

("HANDLES", params.get('handles', '')), #skipped if 'handles' not in extra args
("VERSION", params['version']),
("",''),
("",''),
("ARTIST", params['username']),
("DATE/TIME", datetime.datetime.now().strftime("%m/%d/%Y %I:%M %p"))]

#comp the annotations over top the slate frame
skipLines = 0
for i in range(0, len(slateText)):

if (slateText[i][1] == ""):
skipLines += 1
continue

lineNum = i - skipLines
if (slateText[i][0] != ""):

txtImg = Draft.Image.CreateAnnotation(slateText[i][0] + ": ",
annotationInfo)

slate.CompositeWithPositionAndAnchor(txtImg, 0.45, 0.7 - (lineNum * 0.06),
Draft.Anchor.SouthEast, Draft.CompositeOperator.OverCompositeOp)

if (slateText[i][1] != ""):
txtImg = Draft.Image.CreateAnnotation(slateText[i][1], annotationInfo)
slate.CompositeWithPositionAndAnchor(txtImg, 0.46, 0.7 - (lineNum * 0.06),

Draft.Anchor.SouthWest, Draft.CompositeOperator.OverCompositeOp)

Once the slate frame is created, you simply need to encode this image before feeding the rest of the frames into the
VideoEncoder. By re-encoding the image multiple times you can hold the slate for as long as you desire. For
example if we wanted to hold our slate for half a second in a 24 frames per second clip, we would encode the slate 12
times.

numberOfSlateFrames = 12 # hold for half a second @ 24fps
#encode the slate frames at the start of the video
for i in range(0, numberOfSlateFrames):

encoder.EncodeNextFrame(slate)
#encode the rest of the video after this

Discussion

The first two lines of the solution create a black frame for our slate information to be written on. The next part is
when we set up all the information that will appear on our slate. All of this info comes from Deadline (See Deadline
Integration and Param Parsing for more details). The next parts will create the text images and composite them onto
our black slate so that the titles (like SHOW or ARTIST) appear on the left and the values appear on the right.

54 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

The last part of the solution encodes the slate frame to the start of our video. Set numberOfSlateFrames to be
the number of frames you want your slate to be.

5.3.11 Using the Parameter Parsing Utility for Custom Parameters

Problem

Sometimes you want to do several tasks that differ only slightly. Instead of creating a separate script for each task, we
can create a more general script that uses parameters for the details that differ.

With all your great photos of Patches, you want to create a simple LOLcat script that will add two text strings to a
photo, one at the top, and one at the bottom, both centered. You have already picked out the perfect font, etc, but each
photo will have different text, and all the photos have different names. You also want the option of specifying the font
size for the bottom text, in case it is too long to fit at the default size.

Solution

import sys # Deadline sends script parameters as command line arguments, sys.argv.
from DraftParamParser import * # Draft helper functions for processing arguments.

The argument name/type pairs we're expecting.
expectedTypes = dict()
expectedTypes['inFile'] = '<string>'
expectedTypes['outFile'] = '<string>'
expectedTypes['topText'] = '<string>'
expectedTypes['bottomText'] = '<string>'
We don't specify the bottom text size parameter here, because it is optional.
We will use ParseCommandLine_TypeAgnostic to check for it.

Parse the command line arguments.
params = ParseCommandLine(expectedTypes, sys.argv) # params now contains a

dictionary of the parameters initialized to values from the arguments.
inFile = params['inFile'] # The photo we wish to use for the lolcat image.
outFile = params['outFile'] # Where to save the lolcat image.
topText = params['topText'] # Text to place at the top of the image.
bottomText = params['bottomText'] # Text to place at the bottom of the image.

image = Draft.Image.ReadFromFile(inFile) # Read in the photo to use for our LOLcat.

Set up how you want the text to appear.
textInfo = Draft.AnnotationInfo()
textInfo.PointSize = 48

Create the image for the top text.
topTextImage = Draft.Image.CreateAnnotation(topText, textInfo)

edgeOffset = 20.0 / image.height # Position text 20 pixels from the top and bottom.

Add the top text to the output image.
image.CompositeWithPositionAndAnchor(topTextImage, 0.5, 1.0 - edgeOffset,

Draft.Anchor.North, Draft.CompositeOperator.OverCompositeOp)

Check to see if we specified the optional bottom text size.
paramsA = ParseCommandLine_TypeAgnostic(sys.argv)
if ('bottomTextSize' in paramsA) :

We must convert non-string types ourselves for type agnostic parameters.

5.3. Intermediate Operations 55

Draft Documentation, Release 1.6.1

textInfo.PointSize = int(paramsA['bottomTextSize'])

Create the image for the bottom text.
bottomTextImage = Draft.Image.CreateAnnotation(bottomText, textInfo)

Add the bottom text to the output image.
image.CompositeWithPositionAndAnchor(bottomTextImage, 0.5, edgeOffset,

Draft.Anchor.South, Draft.CompositeOperator.OverCompositeOp)

image.WriteToFile(outFile) # Save the completed LOLcat image.

Discussion

To run this script from the command line, assuming it is in a file called LOLcat.py, we can use:

> python lolcat.py inFile="Patches.jpg" outFile="PatchesLOL.jpg" topText="LOL" \
bottomText="I AM PATCHES"

or:

> python lolcat.py inFile="Patches.jpg" outFile="PatchesLOL.jpg" topText="I AM CAT" \
bottomText="HEAR ME ROAR!!!" 'bottomTextSize'=88

Valid types for the expected parameter types include ’<string>’, ’<int>’ and ’<float>’.

DraftParamParser contains other useful functions. For example, to convert the parameter from a string to a list
of frames, use:

frames = FrameRangeToFrames(params['frameList']) # Get a list of individual frames

To create a filename from a filename pattern and frame number, use:

currFilename = ReplaceFilenameHashesWithNumber(filePattern, currFrameNum)

If we expect to be using the same parameter values multiple times, we can store them in a file and parse them using:

params = ParseParamFile(expectedTypes, paramFile)

5.3.12 Write an Image to File with a Maximum Bit Depth

Problem

You want to write an image to file and specify a maximum bit depth.

Solution

import Draft
from DraftParamParser import SplitDataType # Import SplitDataType from the DraftParamParser library

Read an image from file
image = Draft.Image.ReadFromFile('//path/to/in.exr')

Get the current file channel map
fileChannelMap = image.GetFileChannelMap()

56 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

Set a max bit depth of 16
for key in fileChannelMap:

splitDataType = SplitDataType(fileChannelMap[key])
bitDepth = int(splitDataType[0])
dataType = splitDataType[1]
if bitDepth > 16:

fileChannelMap[key] = '16' + dataType

Set the file channel map
image.SetFileChannelMap(fileChannelMap)

Write the image back to file
image.WriteToFile('//path/to/out.exr')

Discussion

If you want to limit the bit depth of an image file that was read from file to a maximum of 16, you need to first get that
image’s file channel map using:

fileChannelMap = image.GetFileChannelMap()

Then, fileChannelMap will store a dictionary containing the data type for each channel present in the image. The
function SplitDataType() from the DraftParamParser library takes a valid data type string made of a strictly
positive number followed by an optional group of letters and split this string in two, the first part being the bit depth
and the second the optional group of letters. Looping through all the image channel, you can easily extract the bit
depth of each channel by using:

splitDataType = SplitDataType(fileChannelMap[key])
bitDepth = int(splitDataType[0])
dataType = splitDataType[1]

and you can modify the channel bit depth using:

if bitDepth > 16:
fileChannelMap[key] = '16' + dataType

You can then write the image back to file. Note that even if, in this process, you set the file channel data type to ‘16ui’
before writing an EXR image to file, the channel will still be written as ‘32ui’ since an EXR unsigned integer always
has a bit depth of 32.

See Also

You can consult the sections Image File Channel Map in Concepts and Write an Image to File with a Specific File
Channel Map in the Basic Cookbook.

5.3.13 Embed a Timecode in a Video File

Problem

You want to extract a timecode from a EXR image sequences and embed it in a video file.

5.3. Intermediate Operations 57

Draft Documentation, Release 1.6.1

Solution

import Draft
from DraftParamParser import ReplaceFilenameHashesWithNumber # Import ReplaceFilenameHashesWithNumber from the DraftParamParser library

Create a Draft.ImageInfo object used to extract a Draft.Timecode object
imageInfo = Draft.ImageInfo()

Main encoding loop
for currFrame in range(1, 200):

currFile = ReplaceFilenameHashesWithNumber('movie_frame####.exr', currFrame)
frame = Draft.Image.ReadFromFile(currFile, imageInfo)

If first frame and a timecode is found, specify the timecode parameter when creating the encoder
if currFrame == 1:

if(imageInfo.timecode):
encoder = Draft.VideoEncoder('//path/to/video/save.mov', timecode = imageInfo.timecode)

else:
encoder = Draft.VideoEncoder('//path/to/video/save.mov')

encoder.EncodeNextFrame(frame)

encoder.FinalizeEncoding()

Discussion

In order to embed a timecode in a video file, you can extract the timecode embedded in the first frame of an image
sequence. To do so, you first need to check if there’s one. If a Timecode is set in imageInfo object, the if clause will
execute and we’ll initialize the video encoder and embed the first frame’s timecode using:

encoder = Draft.VideoEncoder('//path/to/video/save.mov', timecode = imageInfo.timecode)

If no timecode is found, we’ll have:

imageInfo.timecode = None

and the else clause will execute, initializing the encoder using:

encoder = Draft.VideoEncoder('//path/to/video/save.mov')

The remaining encoding steps are the same as usual, finishing with the line:

encoder.FinalizeEncoding()

to finalize and save the resulting video to file.

See Also

You can consult the sections Timecode in Concepts and Embed a Timecode in an Image File in the Basic Cookbook.

5.3.14 Display an Image Using PySide

Problem

You want to access a Draft.Image as a byte array and display it with PySide.

58 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

Solution

import Draft

Required imports for using PySide
import sys
from PySide.QtCore import *
from PySide.QtGui import *

Read an image from file and creates an ARGB32 string representing the image
img = Draft.Image.ReadFromFile('//path/to/in.exr')
imgAsByteArray = img.ToBytes()

Displays the image using PySide
app = QApplication(sys.argv)
label = QLabel()

imgQT = QImage(imgAsByteArray, img.width, img.height, QImage.Format_ARGB32)
pixMap = QPixmap.fromImage(imgQT)

label.setPixmap(pixMap)
label.show()

app.exec_()

Discussion

To display an image using PySide you first need to load the image in memory. Then, you can create a byte array
representing the image using:

imgAsByteArray = img.ToBytes()

For more details on the syntax used by PySide, you can consult the PySide Documentation.

5.4 Advanced Operations

These operations target an audience that is already comfortable with writing Draft scripts.

5.4.1 Extract EXR Layers to Images

Problem

You rendered a sequence of multi-layer EXR and you need to work with each layer separately. You want to extract
each layer and save each of them as a separate EXR image file. In addition, you would like Draft to identify each
layer based on your multi-layer EXR’s channel names and to write each layer to file automatically with a meaningful
filename.

Solution

5.4. Advanced Operations 59

https://wiki.qt.io/PySideDocumentation

Draft Documentation, Release 1.6.1

import Draft
from DraftParamParser import *

startFrame = 1
endFrame = 100
inFilePattern = "//path/to/multi-layer####.exr"
outFilePattern = "//path/to/output.exr"

Define a dictionary holding channel name equivalences
channelMap = { 'red': 'R', 'green': 'G', 'blue': 'B', 'alpha': 'A',

'r': 'R', 'g': 'G', 'b': 'B', 'a': 'A' }

Get the first frame's channel names
currFile = ReplaceFilenameHashesWithNumber(inFilePattern, 1)
firstFrame = Draft.Image.ReadFromFile(currFile)
channelNames = firstFrame.GetChannelNames()

Create a dictionary of layers,
with the layer name as the key, and the value as the list of channels
layers = {}
for name in channelNames:

Specific layer
if string.rfind(name, '.') >= 0:

(layer, channel) = string.rsplit(name, '.', 1)
Basic RGB(A) layer
else:

(layer, channel) = (None, name)
if channel.lower() in channelMap:

if layer in layers:
layers[layer].append(channel)

else:
layers[layer] = [channel]

else:
print "Ignoring the following layer.channel: ", name, " (channel not recognized as RGBA)"

Process each of the frames in the list of frames
for currFrame in range (startFrame, endFrame + 1):

Read in the frame.
currFile = ReplaceFilenameHashesWithNumber(inFilePattern, currFrame)
frame = Draft.Image.ReadFromFile(currFile)

Extract the layers from the image, saving each as a separate image.
for (layer, channels) in layers.items():

prefix = ''
if layer is not None:

prefix = layer + '.'
channelList = [prefix + channel for channel in channels]
imgLayer = Draft.Image.CreateImage(frame.width, frame.height, channelList)
imgLayer.Copy(frame, channels = channelList)

Rename the channels to RGB(A).
for channel in channels:

if prefix + channel != channelMap[channel.lower()]:
imgLayer.RenameChannel(prefix + channel, channelMap[channel.lower()])

Add the layer name to the filename.
currOutFile = ReplaceFilenameHashesWithNumber(outFilePattern, currFrame)

60 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

if layer is not None:
Specific layer
if string.rfind(currOutFile, '_') >= 0:

(first, second) = string.rsplit(currOutFile, '_', 1)
currOutFile = first + '_' + layer + '_' + second

Basic RGB(A) layer
else:

(root, ext) = os.path.splitext(currOutFile)
currOutFile = root + '_' + layer + ext

Write the layer to file as an image
imgLayer.WriteToFile(currOutFile)

Discussion

In order to be able to extract layers from a wide variety of multi-layer EXR, it’s convenient to first define a dictionary
of channel name equivalence:

channelMap = { 'red': 'R', 'green': 'G', 'blue': 'B', 'alpha': 'A',
'r': 'R', 'g': 'G', 'b': 'B', 'a': 'A' }

In that case, ‘R’, ‘red’ and ‘r’ will be treated as being equivalent. This dictionary can be customized to fit your specific
needs.

Then, we can create a dictionary of layers based on the channel names of the first frame. This code snippet assumes
that all images in the sequence have the same layers as the first frame but this assumption is not mandatory. You can
also create a dictionary of layers for each frame by moving its creation in the main loop.

Once the dictionary of layers is created, we are ready to extract the layers from each frame, saving each one as a
separate image. For each layer, we get the corresponding channelList from the dictionary of layers and we use it
to extract the layer in the following lines of code:

imgLayer = Draft.Image.CreateImage(frame.width, frame.height, channelList)
imgLayer.Copy(frame, channels = channelList)

Note that the method Copy() only copy over to imgLayer the channels in channelList. This is where the
actual layer extraction takes place.

Then, the imgLayer‘s channel names are renamed to RGB(A) and the output filename is renamed to include the
current layer’s name. Finally, imgLayer is written to file.

To summarize, a set of images, one image per EXR layer, is written to file for each frame. For instance, let’s suppose
the list of channel names in your multi-layer EXR image is:

{Reflect.R, Reflect.G, Reflect.B, Refract.R, Refract.G, Refract.B, Shadow.R, Shadow.G, Shadow.B, R, G, B}

Then, this code snippet will create the following EXR image files associated with the sequence’s first frame:

output_Reflect_0001.exr, output_Refract_0001.exr, output_Shadow_0001.exr, output_0001.exr

where output_0001.exr contains the basic RGB(A) layer. A similar set of images will be written to file for each
frame in the sequence.

5.5 Deadline Integration

The Deadline section focusses specifically on how to connect your Draft scripts to Deadline and how to take advantage
of things like custom parameters and Deadline Job meta-data.

5.5. Deadline Integration 61

Draft Documentation, Release 1.6.1

5.5.1 Convert a Frame String to Frame List

Problem

Deadline passes frames to Draft in the form of a Frame Range (such as "1-100"). Converting
this to a List of Frame Numbers can be non-trivial, given how complex Frame Strings can get (e.g.,
"105,200-400x3,500-600step4,1-100" is a valid Frame String).

Solution

Fortunately, we have added a function in Draft’s DraftParamParser helper script specifically to alleviate this
problem:

import Draft
from DraftParamParser import * #Needed to use the utility function

#Sample input
frameRange = "1-10x2,11-15" #Equivalent to 1,3,5,7,9,11,12,13,14,15

frameList = FrameRangeToFrames(frameRange)

#You can now iterate over the Frame List
for frameNumber in frameList:

#Do something with the FrameNumber
print frameNumber

Discussion

In addition to the obvious functionality of expanding a Frame Range string into a list of Frames, the
FrameRangeToFrames() function also sorts the frames in ascending order and ensures that there are no duplicate
frames in the List.

Simple Frame Ranges

It should be noted that Deadline also passes the First and Last frames in the given Frame Range as separate arguments
to Draft (startFrame and endFrame, respectively). If you’re not interested in supporting complex Frame Ranges
in your Template, you can simply use these values to generate a list of frames as follows:

for frameNumber in range(startFrame, endFrame + 1):
#Do something with frameNumber
print frameNumber

5.5.2 Substituting Frame Padding for a Frame Number

Problem

You have a filename with Frame Padding, but need to get the filename for a specific frame in order to Read it in with
Draft.

62 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

Solution

Simply use the ReplaceFilenameHashesWithNumber() helper function provided in Draft’s ParamParser
helper script:

import Draft
from DraftParamParser import * #Needed to use the utility function

#sample inputs for this example
inFile = r"X:\project\shot\frame_list_####.png"
frameNumber = 24

swappedFileName = ReplaceFilenameHashesWithNumber(inFile, frameNumber)

frameImage = Draft.Image.ReadFromFile(swappedFileName)

Discussion

The ReplaceFilenameHashesWithNumber() utility function does exactly what its name implies. It replaces
hashes (’#’) in the given file name (the first argument) with the given frame number (the second argument). The
function will automatically pad the frame number with 0’s in order to match the length of the padding string.

It should be noted that Deadline will always try to pass the inFile argument to the Draft template as a hash-padded
filename. If the Draft input is taken from the output of a rendering application that does not normally use ’#’ as a
padding character (e.g., Maya), Deadline should detect this and swap it to ’#’ whenever possible

5.5.3 Setting Up Custom Command Line Parameters

Problem

If you are re-using the same code in all your templates to fetch some extra information, it might be worth considering
adding a custom command line parameter to Draft. This is a slightly more advanced technique since it requires making
and maintaining changes to some built-in Deadline scripts, but it can potentially save you a lot of work in the long run.

Solution

There are a total of three possible places from where a Draft Job can be submitted to Deadline:

1. The independent Draft Submission Script in the Monitor

• Relevant Script: scripts/Submission/DraftSubmission/DraftSubmission.py

2. The Job right-click Draft script in the Monitor

• Relevant Script: scripts/Jobs/JobDraftSubmission/JobDraftSubmission.py

3. The Draft Event Plugin

• Relevant Script: events/Draft/Draft.py

The three different scripts listed above do slightly different things throughout, but the creation of the Draft job itself
is more or less the same across all of them. The area of interest for this particular Recipe is near the end of the script,
where the Draft arguments are being created. It should look something like this (keep in mind variable names might
be slightly different):

5.5. Deadline Integration 63

Draft Documentation, Release 1.6.1

#prep the script arguments
args = []
args.append('username="%s" ' % scriptDialog.GetValue("UserBox"))
args.append('entity="%s" ' % scriptDialog.GetValue("EntityBox"))
args.append('version="%s" ' % scriptDialog.GetValue("VersionBox"))

To add another argument to Draft, add another line similar to the args.append(...) lines in this section,
and supply it with the value you wish to pass to your template:

#prep the script arguments
args = []
args.append('username="%s" ' % scriptDialog.GetValue("UserBox"))
args.append('entity="%s" ' % scriptDialog.GetValue("EntityBox"))
args.append('version="%s" ' % scriptDialog.GetValue("VersionBox"))

#New custom Draft parameter!
newArgValue = "Hello World!"
args.append('argumentName="%s" ' % newArgValue)

Now, whenever a new Draft job is submitted through this particular script, Deadline will pass another parameter to
your scripts named ’argumentName’, with the string value "Hello World!". Keep in mind that you will have
to modify all three scripts listed above if you want your change to apply to all types of Draft submissions.

Discussion

Note that even though many other (non-Draft) submitters have Draft sections in them, all of these use the Draft Event
Plugin to actually do the submission to Deadline.

Argument Types

While you could technically pass any arbitrarily formatted string to Draft as a parameter, if you’re mak-
ing use of the DraftParamParser utility functions, Draft will expect parameters to be formatted as
’argumentName=<argumentValue>’.

The argument’s value can only be of the following types:

• String

– Format Code ’%s’

– Be sure to add quotes around the value

• Integer

– Format Code ’%d’

– No quotes needed

• Float (decimal value)

– Format code ’%f’

– No quotes needed

• A list combining multiple of the above types

– Lists are to be enclosed in parentheses, and elements should be separated by commas

– E.g.: (1, "string value", 3.5, "another string")

64 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

Here is some code to show what each of these might look like, in the context of the example above:

(NOTE: Pay special attention to how the ‘%’ format codes change based on the type of value it is!)

#String value
strValue = "Hello World!"
args.append('stringValue="%s" ' % strValue)

#Integer value
intValue = 25
args.append('intValue=%d ' % intValue)

#Float value
floatValue = 3.141593
args.append('floatValue=%f ' % floatValue)

#List of values
args.append('listValues=(%s,%d,%f) ' % (strValue,intValue,floatValue))

5.5.4 Using Deadline Job Values

NOTE: The following was written for Deadline 5, and needs to be updated for Deadline 6/7. For now, see the
“simple_slate_h264_*” scripts in yourRepository/draft/Samples/Encode/ for updated examples.

Problem

When a Draft job is submitted to Deadline using either the Draft Event Plugin or the Job right-click Submission
Script, it is tied to another Deadline Job. This ‘original’ Job is generally the Job that was responsible for creating the
input for Draft, and a lot of info from this Job is passed onto Draft. However, Deadline does not pass all of the Job
Properties, and getting those into your Draft script will require either parsing the XML Job file or making calls to
DeadlineCommand and parsing its output.

Solution

Fortunately, we have recently added a helper function to the DraftParamParser utility script to do this compli-
cated work for you. The GetDeadlineJobProperties() function takes the path to the Deadline Repository
and a Job ID as parameters, and returns a dictionary of Job Properties for that particular Job:

from DraftParamParser import *

#Sample input
deadlineRepoPath = r"\\repoServer\DeadlineRepository" #Deadline repository
deadlineJobID = "999_050_999_4253fd64" #The ID of the Deadline Job to parse

#Call the utility function
jobProps = GetDeadlineJobProperties(deadlineRepoPath, deadlineJobID)

#The function returns a dictionary, you can now access any Job property:
print jobProps["Name"] #prints out the original Job's name

#Some properties are lists:
print jobProps["AuxiliaryFileNames"][0] #prints out the first aux filename

#ExtraInfoKeyValues is a dictionary:
print jobProps["ExtraInfoKeyValues"]["DraftTemplate"]

5.5. Deadline Integration 65

Draft Documentation, Release 1.6.1

Discussion

As a general rule, values in the Dictionary will be returned as strings (or None if there is no value). Exceptions to this
rule are for any property containing lists (which are returned as lists of strings), and ExtraInfoKeyValues, which are
returned as a Dictionary. Available properties generally correspond to the Job properties listed here, minus the ’Job’
prefix.

To confirm the name of a given property, you can check by simply opening a .job file found in the Deadline Repository
and inspecting the Tag names.

Getting the Deadline Job ID

If the Draft job is tied to another Deadline job, as described in this entry’s Problem description, Deadline will pass
the ID of this ‘original’ job as a parameter to your Draft template, as ’deadlineJobID=<job ID>’. You can
get the actual value from the template parameters by using the Param Parser utility function, as shown in the earlier
Cookbook entry Setting Up Custom Command Line Parameters.

Cross-Platform Path Considerations

You may have noted that the GetDeadlineJobProperties() function expects you to provide it with the path to
the Deadline Repository. If you have a cross-platform render farm, that path might be different based on which OS the
Slave is running on. Aside from setting up an OS-specific Group for Draft jobs, there would be no way to guarantee
which OS the Draft Job might run on. In that case, it would be best to specify the Repository Path based on the current
OS, as follows:

import sys

dealdineRepoPath = ""
if sys.platform.startswith('linux'): #Linux

deadlineRepoPath = r"/mnt/DeadlineRepository"
elif sys.platform.startswith('darwin'): #Mac OSX

deadlineRepoPath = r"/Volumes/DeadlineRepository"
elif sys.platform.startswith('win32'): #Windows

deadlineRepoPath = r"\\repoServer\DeadlineRepository"

5.5.5 Parsing File Names to Extract Shot Information

Problem

Many studios embed shot/project information within their file structure. Parsing out this information can seem daunt-
ing if you’re new to Python.

Solution

Python has many built-in string/filename parsing utilities that make this problem seem somewhat trivial once you’re
used to them. Let us assume that each entity we’re looking to parse from the filename consists of a directory
(e.g. X:\project_name\sequence_name\shot_name\image_sequence_####.png). In this case, we can use Python’s
os.path.split() function to walk through the directory structure:

import os

#Sample input

66 Chapter 5. Cookbook

http://docs.thinkboxsoftware.com/products/deadline/5.2/User%20Manual/manual/scriptoverview.html#Job
http://docs.python.org/library/os.path.html#os.path.split

Draft Documentation, Release 1.6.1

inFile = r"X:\\project\\sequence\\shot\\image_sequence_####.png"

(head, tail) = os.path.split(inFile)
#tail is now 'image_sequence_####.png' and
#head is now 'X:\\project\\sequence\\shot'

#do it again (on head this time) to go back another level
(head, tail) = os.path.split(head)
#head is now 'X:\\project_name\\sequence'
#tail is now 'shot' - our shot name!
shotName = tail

#keep walking backwards to get more info!
(head, tail) = os.path.split(head)
#head is now 'X:\\project'
#tail is now 'sequence' - our sequence name!
sequenceName = tail

#one more...
(head, tail) = os.path.split(head)
#head is now just 'X:'
#tail is now 'project' - our project name!
projectName = tail

Note that if you have more than one entity name in your directories, you can still use the above approach, but you will
need the generic Python’s String version of split(), to divide things up even more.

Let’s say for the sake of example that one of your directories is the sequence name AND shot name, separated by an
underscore: "sequence_shot". You can then use split() to split the string by the underscore, which acts as a
separator:

#Sample input
directoryName = "sequence_shot"

splitResult = directoryName.split("_") #split on underscores
sequenceName = splitResult[0] #first part of the split is the sequence
shotName = splitResult[1] #second part of the split is the shot

This is obviously extendable to any number of splits (splitResult will have one element for each split it makes),
and different separators (simply change the split argument to be your delimiter).

Discussion

It is important to be aware that sometimes, for whatever reason, the paths passed into Draft may not match your
expectations. In that event, it is important to know how each of the above code snippets will behave.

The first example should be fairly robust; in the worst-case scenario, ’shotName’, ’sequenceName’, and
’projectName’ will just be blank (or the incorrect value). However, in the second example, if there are not
enough results in ’splitResult’, you might get an IndexError when trying to get a value you expect to be
there. To make this more robust, you can add a try-except block around this code to prevent it from crashing your
Draft template, as follows:

#Sample input
directoryName = "sequence_shot"

#Initialize our output variables, in the worst-case they will be empty
sequenceName = ""
shotName = ""

5.5. Deadline Integration 67

http://docs.python.org/library/stdtypes.html#str.split
http://docs.python.org/library/stdtypes.html#str.split
http://docs.python.org/library/exceptions.html#exceptions.IndexError

Draft Documentation, Release 1.6.1

try:
splitResult = directoryName.split("_") #split on underscores
sequenceName = splitResult[0] #first part of the split is the sequence
shotName = splitResult[1] #second part of the split is the shot

except IndexError:
pass

5.6 Color Operations

This section focuses on color management within Draft and how to manipulate color spaces.

5.6.1 Apply a Gamma Correction

Problem

Your image or video has the wrong gamma. You need to apply a gamma correction.

Solution

Use the Draft.Image.ApplyGamma() method:

import Draft

inFile = '/path/to/input.exr'
outFile = '/path/to/output.exr'

img = Draft.Image.ReadFromFile(inFile)
img.ApplyGamma(2.2)
img.WriteToFile(outFile)

Discussion

The gamma correction may be the opposite of what you expect. For example, the 2.2 gamma in our example will make
grays darker. If you want the opposite behaviour, please use:

img.ApplyGamma(1.0 / gamma)

Where gamma is the gamma correction you want to apply.

5.6.2 Create Cineon Images from EXR Images

Problem

You have a linear color .EXR image, and you want to create a Cineon .DPX image from it.

68 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

Solution

You can use the following script:

import Draft

inFile = '/path/to/input.exr'
outFile = '/path/to/output.dpx'

lut = Draft.LUT.CreateCineon()
img = Draft.Image.ReadFromFile(inFile)
lut.Apply(img)
img.WriteToFile(outFile)

Discussion

By default, Draft writes linear DPX files. To create a DPX file with Cineon color, we must create a Cineon LUT and
apply it to the image before we WriteToFile(). This line creates a Cineon LUT:

lut = Draft.LUT.CreateCineon()

And this line applies the LUT to our image:

lut.Apply(img)

5.6.3 Convert a QuickTime’s Color Space

Problem

You have a QuickTime movie that is not in the desired color space. For example, the QuickTime file has linear color
but you want sRGB instead.

Solution

Use the Draft.LUT class:

import Draft

inFile = '/path/to/input.mov'
outFile = '/path/to/output.mov'

dec = Draft.VideoDecoder(inFile)
enc = Draft.VideoEncoder(outFile, dec.fps, dec.width, dec.height)

lut = Draft.LUT.CreateSRGB()

img = Draft.Image.CreateImage(1, 1)

while dec.DecodeNextFrame(img):
lut.Apply(img)
enc.EncodeNextFrame(img)

enc.FinalizeEncoding()

5.6. Color Operations 69

Draft Documentation, Release 1.6.1

Discussion

In our script above, two lines are repsonsible for performing the color conversion. First, we call
Draft.LUT.CreateSRGB() to create the LUT. The returned LUT will convert images from Linear color to sRGB.

Next, we call Apply() to apply our LUT to every frame in the movie before we encode it into our output movie.

Draft includes several LUTs in addition to sRGB:

LUT Draft command
Cineon Draft.LUT.CreateCineon()
Alexa V3 Log C Draft.LUT.CreateAlexaV3LogC()
sRGB Draft.LUT.CreateSRGB()
Rec. 709 Draft.LUT.CreateRec709()
Gamma correction Draft.LUT.CreateGamma()

See Also

For the inverting a LUT please review Bake a Color Transform.

5.6.4 Bake a Color Transform

Problem

You have an image file with an Alexa LogC LUT. You want to bake the Alexa LUT to prepare the files for display.

Solution

Use the Draft.LUT class:

import Draft

inFile = '/path/to/input.exr'
outFile = '/path/to/output.exr'

img = Draft.Image.ReadFromFile(inFile)

lut = Draft.LUT.CreateAlexaV3LogC().Inverse()
lut.Apply(img)

img.WriteToFile(outFile)

Discussion

To create the LUT, we call Draft.LUT.CreateAlexaV3LogC(). The resulting LUT will convert an image from
Linear to Alexa V3 Log C. This is the opposite of what we want, so we use the Inverse() method. This method
returns a new LUT that will convert an image from Alexa V3 Log C to Linear, which is what we need.

We apply the LUT to the image:

lut.Apply(img)

70 Chapter 5. Cookbook

Draft Documentation, Release 1.6.1

before we WriteToFile().

Draft includes several LUTs in addition to Alexa V3 Log C:

LUT Draft command
Cineon Draft.LUT.CreateCineon()
Alexa V3 Log C Draft.LUT.CreateAlexaV3LogC()
sRGB Draft.LUT.CreateSRGB()
Rec. 709 Draft.LUT.CreateRec709()
Gamma correction Draft.LUT.CreateGamma()

See Also

For the applying a Color Transform please review Convert a QuickTime’s Color Space.

5.6. Color Operations 71

Draft Documentation, Release 1.6.1

72 Chapter 5. Cookbook

CHAPTER

SIX

RELEASE NOTES

6.1 Draft 1.5.3

This version of Draft will not work with Deadline 6 or earlier.

6.1.1 What’s New

New License File Required

• This build requires a new version 1.5 license. Please contact sales@thinkboxsoftware.com for an updated Draft
1.5 license file.

Compatibility

• Scripts written for previous versions of Draft should still work fine with Draft 1.5.

Images

• Added support for specifying the channel bit depth when writing an image to file.

• Added support for embedding a timecode when writing an image to file.

• Added support for accessing an image in memory as a byte array that is compatible with the QByteArray in
PySide.

Videos

• Added support for embedding a timecode when encoding a video.

• Added support for video concatenation.

6.1.2 Bug Fixes

• Fixed a bug that was causing ImageMagick to read image file twice.

• Fixed a bug that was preventing Draft to encode a video with codec DNxHD and format MXF for some frame
rates.

• Fixed a bug that was causing some ImageMagick warnings to throw runtime errors.

• Fixed bugs in Draft.Image.RenameChannel() and Draft.Image.SetToColor(). Those functions were not handling
file channel mapping correctly.

• Fixed a bug that was causing overflows when assembling big OpenEXR images with the TileAssembler.

• Fixed a bug in Draft.VideoDecoder.DecodeNextFrame(). That function was not handling file channel mapping
correctly.

73

mailto:sales@thinkboxsoftware.com

Draft Documentation, Release 1.6.1

• Fixed two bugs in Draft.Image.Resize(). Data outside of display window was not cropped when necessary and
an image was not resized if data window did not need to be resized.

• Fixed a bug in Draft.Image.WriteToFile(). When writing a tiled EXR image, certain resolutions were causing a
memory access violation.

6.2 Draft 1.4.3

This version of Draft will not work with Deadline 6 or earlier.

6.2.1 What’s New

New License File Required

• This build requires a new version 1.4 license. Please contact sales@thinkboxsoftware.com for an updated Draft
1.4 license file.

Compatibility

• Scripts written for previous versions of Draft should still work fine with Draft 1.4.

• Added support for OS X El Capitan (version 10.11).

Images

• Added support for controlling image compression and quality settings.

• Updated to ImageMagick 6.9.1.

Videos

• Updated to FFmpeg 2.8.

General Improvement

• Writing an image to file with an undefined compression doesn’t issue a warning anymore.

• Improved Draft robustness.

6.2.2 Bug Fixes

• Draft was always writing PNG and TIFF files with an alpha channel.

• The TileAssembler was setting final data window with width and height one pixel bigger than necessary, tem-
porarily carrying useless black pixels.

• Successive crops was not giving the correct results (resulting image was shifted).

• Fixed a bug in deepcopy.

• Changed Magick::Color(“black”) to Magick::Color(0, 0, 0) so Draft won’t rely on finding colors.xml.

• Draft was not closing files properly (bug introduced when ffmpeg was updated to version 2.3).

• It was impossible to resize a one pixel image (bug introduced when support for exr windows was added).

• Fixed a bug that prevented Draft Tile Assembler to assemble tiles with empty data window.

74 Chapter 6. Release Notes

mailto:sales@thinkboxsoftware.com

Draft Documentation, Release 1.6.1

6.3 Draft 1.3.2

Draft 1.3.2 is included with Deadline 7.1.0.35.

This version of Draft will not work with Deadline 6 or earlier.

6.3.1 What’s New

New License File Required

• This build requires a new version 1.3 license. Please contact sales@thinkboxsoftware.com for an updated Draft
1.3 license file.

Compatibility

• Scripts written for previous versions of Draft should still work fine with Draft 1.3.

EXR Images

• Added support for EXR data and display windows (previously data windows were set to the same size as the
display windows).

• Updated to OpenEXR 2.2.0.

LUT Support

• Added ACES 1.0 LUTs to the included ocio-configs folder.

• Improved the robustness of the Draft ASCCDL Reader. The reader can now handle different syntax in its input
file.

Draft Tile Assembler

• Added support for assembling big images by exposing a new class in Python called TileAssembler. Most of the
logic of an assembly job can now be handled internally.

6.3.2 Bug Fixes

• Fixed a bug when encoding an image with VideoEncoder. The VideoEncoder was applying a bit of scaling to
the image.

• Fixed a bug on Mac OS X when encoding with certain dimensions (ie: 640 x 480) was causing a memory error
crash.

6.4 Draft 1.2.3

Draft 1.2.3 is included with Deadline 7.0.0.54.

This version of Draft will not work with Deadline 6 or earlier.

6.4.1 What’s New

New License File Required

• This build requires a new version 1.2 license. Please contact sales@thinkboxsoftware.com for an updated Draft
1.2 license file.

6.3. Draft 1.3.2 75

mailto:sales@thinkboxsoftware.com
mailto:sales@thinkboxsoftware.com

Draft Documentation, Release 1.6.1

Compatibility

• Updated Windows builds for compatibility with Deadline 7’s installer (updated from VC90 to VC100 runtime
library).

• Updated Python compatibility to 2.7.

• Updated simple_slate_h264_burnins_with_proxy.py and simple_slate_h264_with_proxy.py sample scripts so
that they work properly with Deadline 7.

• Scripts written for previous versions of Draft should still work fine with Draft 1.2.

Encoding and Decoding Video

• Updated FFmpeg to version 2.3.

• Added support for webm files: vp8 video codec, vorbis audio.

OpenColorIO

• Use config.ocio and ColorSpaces / Roles to create OCIO color processors for color correcting images.

• Create OCIO color processors directly from your favourite LUT files... see http://opencolorio.org/FAQ.html for
the full list of LUT formats supported.

• New OCIO lut sample script in the samples directory.

ASC CDL

• A fully standard-compliant implementation of ASC CDL LUTs. (The clamping steps in OCIO’s ASC CDL
implementation is not currently standard-compliant.)

• New ASC CDL sample script in the samples directory.

Unicode

• Draft now supports unicode filenames and text annotations.

• Note: We need to modify the DraftParamParser.py library so that unicode strings aren’t mangled in the Deadline
/ Draft boundary, but once they’re in, Draft handles them properly.

Licensing Improvements

• Draft licences are now more flexible. Most Draft features require only that a license be present. Actual checkout
of licensees now happens only while videos are being encoded or decoded.

• “Lost connection to license server” no longer pops up dialog boxes on Windows.

6.4.2 Bug Fixes

• Fixed a crash when encoding movie with audio.

• Improved error messages when trying to open an exr file that isn’t there.

• Fixed error messages so they no longer appear as “unidentifiable C++ exception” in Mac OS 10.8.

6.5 Draft 1.1.1

Draft 1.1.1 is included with Deadline 6.2.0.32.

76 Chapter 6. Release Notes

http://opencolorio.org/FAQ.html

Draft Documentation, Release 1.6.1

6.5.1 Bug Fixes

• Fixed a Draft.VideoEncoder bug that resulted in crazy framerates when a framerate of 23.976 was requested.

• Fixed a bug where spaces in the PATH environment variable would result in Draft failing to import.

6.6 Draft 1.1.0

Draft 1.1.0 is included with Deadline 6.1.54655.

6.6.1 What’s New

New License File Required

• This build requires a new version 1.1 license. Please contact sales@thinkboxsoftware.com for an updated Draft
1.1 license file.

Removed Support for Mac OS X 10.5

• Draft now requires Mac OS X 10.6 or later.

EXR Images

• Can now write tiled EXR files (see “Working with Tiled Images”, below).

• Draft now uses ZIPS (single scanline ZIP) compression when writing scanline EXR files. Previously, Draft used
ZIP (16-scanline ZIP) compression instead.

Image Channels

• Added operations for working with arbitrary Image channels (see “Working with Image Channels”, below).

• Draft.Image.SetChannel(channel, value) will now create the specified channel if it does not already exist.

• Draft no longer adds an ‘A’ (alpha) channel to all images.

• Now, an image will only have an ‘A’ channel if there was one in the original image, or if you add one yourself
by using Draft.Image.SetChannel(‘A’, 1.0).

Error Messages

• Draft.Image.ReadFromFile() no longer reports warnings as errors.

• Improved error message when attempting to write movie files using Draft.Image.WriteToFile().

6.6.2 Bug Fixes

• Fixed Draft.VideoEncoder crash with some frame sizes.

6.6.3 Working with Tiled Images

Tile settings are controlled using the new Draft.ImageInfo class:

• Draft.ImageInfo can be passed to Draft.Image.ReadFromFile(filename, imageInfo) to retrieve tile settings.

• Draft.ImageInfo can be passed to Draft.Image.WriteToFile(filename, imageInfo) to control the tile settings for
the written file.

6.6. Draft 1.1.0 77

mailto:sales@thinkboxsoftware.com

Draft Documentation, Release 1.6.1

6.6.4 Working with Image Channels

We added or changed the following Draft.Image methods to work with arbitrary Image channels:

• Draft.Image.CreateImage(width, height, channels)

• Draft.Image.GetChannelNames()

• Draft.Image.HasChannel(channel)

• Draft.Image.Copy(image, left, bottom, channels)

• Draft.Image.RemoveChannel(channel)

• Draft.Image.RenameChannel(oldChannel, newChannel)

For a description of these new methods, see the Image class documentation.

78 Chapter 6. Release Notes

INDEX

A
A (Draft.ColorRGBA attribute), 12
About() (Draft.LibraryInfo static method), 23
AddCompositeOp (Draft.CompositeOperator attribute),

13
AddTile() (Draft.TileAssembler method), 27
Anaglyph() (Draft.Image static method), 14
Anchor (class in Draft), 11
AnnotationInfo (class in Draft), 12
Apply() (Draft.LUT method), 24
ApplyGamma() (Draft.Image method), 14
Ascent (Draft.FontTypeMetric attribute), 14
AssembleToFile() (Draft.TileAssembler method), 27
AtopCompositeOp (Draft.CompositeOperator attribute),

13

B
B (Draft.ColorRGBA attribute), 12
BackgroundColor (Draft.AnnotationInfo attribute), 12
BaselineOffset (Draft.FontTypeMetric attribute), 14
BumpmapCompositeOp (Draft.CompositeOperator at-

tribute), 13

C
Center (Draft.Anchor attribute), 11
CenterGravity (Draft.PositionalGravity attribute), 11
ClearOCIOCaches() (Draft.LUT static method), 24
Color (Draft.AnnotationInfo attribute), 12
ColorRGBA (class in Draft), 12
Composite() (Draft.Image method), 15
CompositeOperator (class in Draft), 13
CompositeWithAnchor() (Draft.Image method), 15
CompositeWithGravity() (Draft.Image method), 15
CompositeWithPositionAndAnchor() (Draft.Image

method), 16
CompositeWithPositionAndGravity() (Draft.Image

method), 16
compression (Draft.ImageInfo attribute), 22
ConcatenateVideoFiles() (in module Draft), 28
Copy() (Draft.Image method), 17
CopyBlueCompositeOp (Draft.CompositeOperator at-

tribute), 13

CopyCompositeOp (Draft.CompositeOperator attribute),
13

CopyGreenCompositeOp (Draft.CompositeOperator at-
tribute), 13

CopyOpacityCompositeOp (Draft.CompositeOperator at-
tribute), 13

CopyRedCompositeOp (Draft.CompositeOperator
attribute), 13

CreateAlexaV3LogC() (Draft.LUT static method), 25
CreateAnnotation() (Draft.Image static method), 17
CreateASCCDL() (Draft.LUT static method), 24
CreateCineon() (Draft.LUT static method), 25
CreateGamma() (Draft.LUT static method), 25
CreateImage() (Draft.Image static method), 17
CreateOCIOProcessor() (Draft.LUT static method), 25
CreateOCIOProcessorFromFile() (Draft.LUT static

method), 25
CreateRec709() (Draft.LUT static method), 26
CreateSRGB() (Draft.LUT static method), 26
Crop() (Draft.Image method), 18

D
DecodeFrame() (Draft.VideoDecoder method), 30
DecodeNextFrame() (Draft.VideoDecoder method), 30
Descent (Draft.FontTypeMetric attribute), 14
Description() (Draft.LibraryInfo static method), 23
DifferenceCompositeOp (Draft.CompositeOperator at-

tribute), 13
DrawShadow (Draft.AnnotationInfo attribute), 12

E
East (Draft.Anchor attribute), 11
EastGravity (Draft.PositionalGravity attribute), 11
EncodeNextFrame() (Draft.VideoEncoder method), 29

F
FinalizeEncoding() (Draft.VideoEncoder method), 29
FontMetric (Draft.AnnotationInfo attribute), 12
FontType (Draft.AnnotationInfo attribute), 12
FontTypeMetric (class in Draft), 14
fps (Draft.VideoDecoder attribute), 30

79

Draft Documentation, Release 1.6.1

G
G (Draft.ColorRGBA attribute), 12
GetChannelNames() (Draft.Image method), 18
GetFileChannelMap() (Draft.Image method), 18

H
HasChannel() (Draft.Image method), 18
height (Draft.Image attribute), 22
height (Draft.VideoDecoder attribute), 30

I
Image (class in Draft), 14
ImageInfo (class in Draft), 22
InCompositeOp (Draft.CompositeOperator attribute), 13
Inverse() (Draft.LUT method), 26

L
LibraryInfo (class in Draft), 23
LUT (class in Draft), 24

M
MaxHorizontalAdvance (Draft.FontTypeMetric at-

tribute), 14
MinusCompositeOp (Draft.CompositeOperator attribute),

13
MultiplyCompositeOp (Draft.CompositeOperator at-

tribute), 13

N
North (Draft.Anchor attribute), 11
NorthEast (Draft.Anchor attribute), 11
NorthEastGravity (Draft.PositionalGravity attribute), 11
NorthGravity (Draft.PositionalGravity attribute), 11
NorthWest (Draft.Anchor attribute), 11
NorthWestGravity (Draft.PositionalGravity attribute), 11

O
OutCompositeOp (Draft.CompositeOperator attribute),

13
OverCompositeOp (Draft.CompositeOperator attribute),

13

P
Padding (Draft.AnnotationInfo attribute), 12
PlusCompositeOp (Draft.CompositeOperator attribute),

13
PointSize (Draft.AnnotationInfo attribute), 12
PositionalGravity (class in Draft), 11
Premultiply() (Draft.Image method), 19

Q
QTFastStart() (in module Draft), 28
quality (Draft.ImageInfo attribute), 22

R
R (Draft.ColorRGBA attribute), 13
ReadFromFile() (Draft.Image static method), 19
RemoveChannel() (Draft.Image method), 19
RenameChannel() (Draft.Image method), 19
Resize() (Draft.Image method), 19
Revision() (Draft.LibraryInfo static method), 23

S
SetChannel() (Draft.Image method), 20
SetChannels() (Draft.TileAssembler method), 27
SetFileChannelMap() (Draft.Image method), 20
SetOCIOConfig() (Draft.LUT static method), 26
SetSize() (Draft.TileAssembler method), 28
SetToColor() (Draft.Image method), 21
ShadowColor (Draft.AnnotationInfo attribute), 12
South (Draft.Anchor attribute), 11
SouthEast (Draft.Anchor attribute), 11
SouthEastGravity (Draft.PositionalGravity attribute), 11
SouthGravity (Draft.PositionalGravity attribute), 11
SouthWest (Draft.Anchor attribute), 11
SouthWestGravity (Draft.PositionalGravity attribute), 11
SubtractCompositeOp (Draft.CompositeOperator at-

tribute), 13

T
TextHeight (Draft.FontTypeMetric attribute), 14
TextWidth (Draft.FontTypeMetric attribute), 14
TileAssembler (class in Draft), 27
tileSize (Draft.ImageInfo attribute), 22
Timecode (class in Draft), 26
timecode (Draft.ImageInfo attribute), 22
timecode (Draft.VideoDecoder attribute), 30
ToBytes() (Draft.Image method), 21

U
UndefinedCompositeOp (Draft.CompositeOperator at-

tribute), 13
Unpremultiply() (Draft.Image method), 21

V
Version() (Draft.LibraryInfo static method), 23
VideoDecoder (class in Draft), 30
VideoEncoder (class in Draft), 28

W
West (Draft.Anchor attribute), 11
WestGravity (Draft.PositionalGravity attribute), 11
width (Draft.Image attribute), 22
width (Draft.VideoDecoder attribute), 30
WriteToFile() (Draft.Image method), 21

80 Index

Draft Documentation, Release 1.6.1

X
XorCompositeOp (Draft.CompositeOperator attribute),

13

Index 81

	Overview
	Getting Started
	Installation and Licensing
	Usage

	Concepts
	Image
	Image File Channel Map
	ImageInfo
	Timecode
	Video

	Library Reference
	Anchor
	AnnotationInfo
	ColorRGBA
	CompositeOperator
	FontTypeMetric
	Image
	ImageInfo
	LibraryInfo
	LUT
	Timecode
	TileAssembler
	Video

	Cookbook
	Introduction
	Basic Operations
	Intermediate Operations
	Advanced Operations
	Deadline Integration
	Color Operations

	Release Notes
	Draft 1.5.3
	Draft 1.4.3
	Draft 1.3.2
	Draft 1.2.3
	Draft 1.1.1
	Draft 1.1.0

	Index

